50 research outputs found

    Quasi-Normal Modes of Stars and Black Holes

    Get PDF
    Perturbations of stars and black holes have been one of the main topics of relativistic astrophysics for the last few decades. They are of particular importance today, because of their relevance to gravitational wave astronomy. In this review we present the theory of quasi-normal modes of compact objects from both the mathematical and astrophysical points of view. The discussion includes perturbations of black holes (Schwarzschild, Reissner-Nordstr\"om, Kerr and Kerr-Newman) and relativistic stars (non-rotating and slowly-rotating). The properties of the various families of quasi-normal modes are described, and numerical techniques for calculating quasi-normal modes reviewed. The successes, as well as the limits, of perturbation theory are presented, and its role in the emerging era of numerical relativity and supercomputers is discussed.Comment: 74 pages, 7 figures, Review article for "Living Reviews in Relativity

    Deciphering the Preference and Predicting the Viability of Circular Permutations in Proteins

    Get PDF
    Circular permutation (CP) refers to situations in which the termini of a protein are relocated to other positions in the structure. CP occurs naturally and has been artificially created to study protein function, stability and folding. Recently CP is increasingly applied to engineer enzyme structure and function, and to create bifunctional fusion proteins unachievable by tandem fusion. CP is a complicated and expensive technique. An intrinsic difficulty in its application lies in the fact that not every position in a protein is amenable for creating a viable permutant. To examine the preferences of CP and develop CP viability prediction methods, we carried out comprehensive analyses of the sequence, structural, and dynamical properties of known CP sites using a variety of statistics and simulation methods, such as the bootstrap aggregating, permutation test and molecular dynamics simulations. CP particularly favors Gly, Pro, Asp and Asn. Positions preferred by CP lie within coils, loops, turns, and at residues that are exposed to solvent, weakly hydrogen-bonded, environmentally unpacked, or flexible. Disfavored positions include Cys, bulky hydrophobic residues, and residues located within helices or near the protein's core. These results fostered the development of an effective viable CP site prediction system, which combined four machine learning methods, e.g., artificial neural networks, the support vector machine, a random forest, and a hierarchical feature integration procedure developed in this work. As assessed by using the hydrofolate reductase dataset as the independent evaluation dataset, this prediction system achieved an AUC of 0.9. Large-scale predictions have been performed for nine thousand representative protein structures; several new potential applications of CP were thus identified. Many unreported preferences of CP are revealed in this study. The developed system is the best CP viability prediction method currently available. This work will facilitate the application of CP in research and biotechnology

    Population genomics of speciation and admixture

    Get PDF
    The application of population genomics to the understanding of speciation has led to the emerging field of speciation genomics. This has brought new insight into how divergence builds up within the genome during speciation and is also revealing the extent to which species can continue to exchange genetic material despite reproductive barriers. It is also providing powerful new approaches for linking genotype to phenotype in admixed populations. In this chapter, we give an overview of some of the methods that have been used and some of the novel insights gained. We also outline some of the pitfalls of the most commonly used methods and possible problems with interpretation of the results

    Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures

    Get PDF
    BACKGROUND: Protein-protein interactions (PPIs) mediate the vast majority of biological processes, therefore, significant efforts have been directed to investigate PPIs to fully comprehend cellular functions. Predicting complex structures is critical to reveal molecular mechanisms by which proteins operate. Despite recent advances in the development of new methods to model macromolecular assemblies, most current methodologies are designed to work with experimentally determined protein structures. However, because only computer-generated models are available for a large number of proteins in a given genome, computational tools should tolerate structural inaccuracies in order to perform the genome-wide modeling of PPIs. RESULTS: To address this problem, we developed eRank(PPI), an algorithm for the identification of near-native conformations generated by protein docking using experimental structures as well as protein models. The scoring function implemented in eRank(PPI) employs multiple features including interface probability estimates calculated by eFindSite(PPI) and a novel contact-based symmetry score. In comparative benchmarks using representative datasets of homo- and hetero-complexes, we show that eRank(PPI) consistently outperforms state-of-the-art algorithms improving the success rate by ~10 %. CONCLUSIONS: eRank(PPI) was designed to bridge the gap between the volume of sequence data, the evidence of binary interactions, and the atomic details of pharmacologically relevant protein complexes. Tolerating structure imperfections in computer-generated models opens up a possibility to conduct the exhaustive structure-based reconstruction of PPI networks across proteomes. The methods and datasets used in this study are available at www.brylinski.org/erankppi

    Impact of menopause and diabetes on atherogenic lipid profile: is it worth to analyse lipoprotein subfractions to assess cardiovascular risk in women?

    Full text link
    corecore