43 research outputs found

    A factor IX variant that functions independently of factor VIII mitigates the hemophilia A phenotype in patient plasma

    Get PDF
    BackgroundRecombinant factor (F)IX-FIAV has previously been shown to function independently of activated FVIII (FVIIIa) and ameliorate the hemophilia A (HA) phenotype inĀ vitro and inĀ vivo.ObjectivesThe aim of this study was to assess the efficacy of FIX-FIAV in plasma from HA patients using thrombin generation (TG) and intrinsic clotting activity (activated partial thromboplastin time [APTT]) analyses.MethodsPlasma obtained from 21 patients with HA (>18 years; 7 mild, 7 moderate, and 7 severe patients) was spiked with FIX-FIAV. The FXIa-triggered TG lag time and APTT were quantified in terms of FVIII-equivalent activity using FVIII calibration for each patient plasma.ResultsThe linear, dose-dependent improvement in the TG lag time and APTT reached its maximum with approximately 400% to 600% FIX-FIAV in severe HA plasma and with approximately 200% to 250% FIX-FIAV in nonsevere HA plasma. The cofactor-independent contribution of FIX-FIAV was therefore suggested and confirmed by the addition of inhibitory anti-FVIII antibodies to nonsevere HA plasma, resulting in a FIX-FIAV response similar to severe HA plasma. Addition of 100% (5 Ī¼g/mL) FIX-FIAV mitigated the HA phenotype from severe to moderate (from ConclusionFIX-FIAV is capable of increasing the FVIII-equivalent activity and coagulation activity in plasma from HA patients, thereby mitigating the HA phenotype. Hence, FIX-FIAV could serve as a potential treatment for HA patients with or without inhibitors.Thrombosis and Hemostasi

    RNAi-mediated inhibition of HIV-1 by targeting partially complementary viral sequences

    Get PDF
    Potent antiviral RNAi can be induced by intracellular expression of short hairpin RNAs (shRNAs) and artificial microRNAs (miRNAs). Expression of shRNA and miRNA results in target mRNA degradation (perfect base pairing) or translational repression (partial base pairing). Although efficient inhibition can be obtained, error-prone viruses such as human immunodeficiency virus type 1 (HIV-1) can escape from RNAi-mediated inhibition by mutating the target sequence. Recently, artificial miRNAs have been shown to be potent RNAi inducers due to their efficient processing by the RNAi machinery. Furthermore, miRNAs may be more proficient in suppressing imperfect targets than shRNAs. In this study, we tested the knockdown efficiency of miRNAs and shRNAs against wild-type and RNAi-escape HIV-1 variants with one or two mutations in the target sequence. ShRNAs and miRNAs can significantly inhibit the production of HIV-1 variants with mutated target sequences in the open reading frame. More pronounced mutation-tolerance was measured for targets in the 3ā€² untranslated region (3ā€² UTR). Partially complementary sequences within the 3ā€² UTR of the HIV-1 RNA genome efficiently act as target sites for miRNAs and shRNAs. These data suggest that targeting imperfect target sites by antiviral miRNAs or shRNAs provides an alternative RNAi approach for inhibition of pathogenic viruses

    Combinatorial RNAi Against HIV-1 Using Extended Short Hairpin RNAs

    Get PDF
    RNA interference (RNAi) is a widely used gene suppression tool that holds great promise as a novel antiviral approach. However, for error-prone viruses including human immunodeficiency virus type 1(HIV-1), a combinatorial approach against multiple conserved sequences is required to prevent the emergence of RNAi-resistant escape viruses. Previously, we constructed extended short hairpin RNAs (e-shRNAs) that encode two potent small interfering RNAs (siRNAs) (e2-shRNAs). We showed that a minimal hairpin stem length of 43 base pairs (bp) is needed to obtain two functional siRNAs. In this study, we elaborated on the e2-shRNA design to make e-shRNAs encoding three or four antiviral siRNAs. We demonstrate that siRNA production and the antiviral effect is optimal for e3-shRNA of 66 bp. Further extension of the hairpin stem results in a loss of RNAi activity. The same was observed for long hairpin RNAs (lhRNAs) that target consecutive HIV-1 sequences. Importantly, we show that HIV-1 replication is durably inhibited in T cells stably transduced with a lentiviral vector containing the e3-shRNA expression cassette. These results show that e-shRNAs can be used as a combinatorial RNAi approach to target error-prone viruses

    Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron

    Get PDF
    RNA interference (RNAi) is a powerful approach to inhibit human immunodeficiency virus type 1 (HIV-1) replication. However, HIV-1 can escape from RNAi-mediated antiviral therapy by selection of mutations in the targeted sequence. To prevent viral escape, multiple small interfering RNAs (siRNAs) against conserved viral sequences should be combined. Ideally, these RNA inhibitors should be expressed simultaneously from a single transgene transcript. In this study, we tested a multiplex microRNA (miRNA) expression strategy by inserting multiple effective anti-HIV siRNA sequences in the miRNA polycistron mir-17-92. Individual anti-HIV miRNAs that resemble the natural miRNA structures were optimized by varying the siRNA position in the hairpin stem to obtain maximal effectiveness against luciferase reporters and HIV-1. We show that an antiviral miRNA construct can have a greater intrinsic inhibitory activity than a conventional short hairpin (shRNA) construct. When combined in a polycistron setting, the silencing activity of an individual miRNA is strongly boosted. We demonstrate that HIV-1 replication can be efficiently inhibited by simultaneous expression of four antiviral siRNAs from the polycistronic miRNA transcript. These combined results indicate that a multiplex miRNA strategy may be a promising therapeutic approach to attack escape-prone viral pathogens

    Design of lentivirally expressed siRNAs

    No full text
    RNA interference (RNAi) has been widely used as a tool for gene knockdown in fundamental research and for the development of new RNA-based therapeutics. The RNAi pathway is typically induced by expression of āˆ¼22 base pair (bp) small interfering RNAs (siRNAs), which can be transfected into cells. For long-term gene silencing, short hairpin RNA (shRNA), or artificial microRNA (amiRNA) expression constructs have been developed that produce these RNAi inducers inside the cell. Currently, these types of constructs are broadly applied to knock down any gene of interest. Besides mono RNAi strategies that involve single shRNAs or amiRNAs, combinatorial RNAi approaches have been developed that allow the simultaneous expression of multiple siRNAs or amiRNAs by using polycistrons, extended shRNAs (e-shRNAs), or long hairpin RNAs (lhRNAs). Here, we provide practical information for the construction of single shRNA or amiRNA vectors, but also multi-shRNA/amiRNA constructs. Furthermore, we summarize the advantages and limitations of the most commonly used viral vectors for the expression of RNAi inducer

    Towards improved shRNA and miRNA reagents as inhibitors of HIV-1 replication

    No full text
    miRNAs are the key players of the RNAi mechanism, which regulates the expression of a large number of mRNAs in human cells. shRNAs are man-made synthetic miRNA mimics that exploit similar intracellular RNA processing routes. Massive amounts of data derived from next-generation sequencing have revealed miRNA species that are derived from alternative biosynthesis pathways. Here, we review recent progress in our understanding of these noncanonical routes of miRNA and shRNA biosynthesis. We focus on ways to use these novel insights for the design of more potent and specific RNAi reagents for therapeutic applications, including the AgoshRNA design, which is processed differently than regular shRNAs. We will also discuss the development of a durable gene therapy against HIV

    HIV-1-based lentiviral vectors

    No full text
    Numerous viral vectors have been developed for the delivery of transgenes to specific target cells. For persistent transgene expression, vectors based on retroviruses are attractive delivery vehicles because of their ability to stably integrate their DNA into the host cell genome. Initially, vectors based on simple retroviruses were the vector of choice for such applications. However, these vectors can only transduce actively dividing cells. Therefore, much interest has turned to retroviral vectors based on the lentivirus genus because of their ability to transduce both dividing and non-dividing cells. The best characterized lentiviral vectors are derived from the human immunodeficiency virus type 1 (HIV-1). This chapter describes the basic features of the HIV-1 replication cycle and the many improvements reported for the lentiviral vector systems to increase the safety and efficiency. We also provide practical information on the production of HIV-1 derived lentiviral vectors, the cell transduction protocol and a method to determine the transduction titers of a lentiviral vecto

    miRNA cassettes in viral vectors: problems and solutions

    No full text
    The discovery of RNA interference (RNAi), an evolutionary conserved gene silencing mechanism that is triggered by double stranded RNA, has led to tremendous efforts to use this technology for basic research and new RNA therapeutics. RNAi can be induced via transfection of synthetic small interfering RNAs (siRNAs), which results in a transient knockdown of the targeted mRNA. For stable gene silencing, short hairpin RNA (shRNA) or microRNA (miRNA) constructs have been developed. In mammals and humans, the natural RNAi pathway is triggered via endogenously expressed miRNAs. The use of modified miRNA expression cassettes to elucidate fundamental biological questions or to develop therapeutic strategies has received much attention. Viral vectors are particularly useful for the delivery of miRNA genes to specific target cells. To date, many viral vectors have been developed, each with distinct characteristics that make one vector more suitable for a certain purpose than others. This review covers the recent progress in miRNA-based gene-silencing approaches that use viral vectors, with a focus on their unique properties, respective limitations and possible solutions. Furthermore, we discuss a related topic that involves the insertion of miRNA-target sequences in viral vector systems to restrict their cellular range of gene expression. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulatio

    Design of extended short hairpin RNAs for HIV-1 inhibition

    Get PDF
    RNA interference (RNAi) targeted towards viral mRNAs is widely used to block virus replication in mammalian cells. The specific antiviral RNAi response can be induced via transfection of synthetic small interfering RNAs (siRNAs) or via intracellular expression of short hairpin RNAs (shRNAs). For HIV-1, both approaches resulted in profound inhibition of virus replication. However, the therapeutic use of a single siRNA/shRNA appears limited due to the rapid emergence of RNAi-resistant escape viruses. These variants contain deletions or point mutations within the target sequence that abolish the antiviral effect. To avoid escape from RNAi, the virus should be simultaneously targeted with multiple shRNAs. Alternatively, long hairpin RNAs can be used from which multiple effective siRNAs may be produced. In this study, we constructed extended shRNAs (e-shRNAs) that encode two effective siRNAs against conserved HIV-1 sequences. Activity assays and RNA processing analyses indicate that the positioning of the two siRNAs within the hairpin stem is critical for the generation of two functional siRNAs. E-shRNAs that are efficiently processed into two effective siRNAs showed better inhibition of virus production than the poorly processed e-shRNAs, without inducing the interferon response. These results provide building principles for the design of multi-siRNA hairpin construct
    corecore