361 research outputs found

    Does the school need new pedagogical diagnostics? Forms, conditions and chances of assessment by "Portfolios"

    Full text link
    Unter dem Stichwort "Portfoliobeurteilung" wird zurzeit eine neue Form der Pädagogischen Diagnostik diskutiert. Dabei lassen sich fünf Typen unterscheiden. Deren Möglichkeiten sowie die Bedingungen eines sinnvollen Einsatzes dieses Instruments werden unter den Perspektiven der Diagnose, des Individuums, der Curriculumevaluation und des Schulsystems diskutiert. (DIPF/Orig.)Currently, a new form of pedagogical diagnostics is discussed under the heading "portfolio-assessment". Five types might be distinguished whose possibilities as well as the conditions of the uses of this instrument have to be discussed under the criteria of "curriculum", "diagnosis", the "individual", "curriculum evaluation" and "school system". (DIPF/Orig.

    Modeling active electrolocation in weakly electric fish

    Full text link
    In this paper, we provide a mathematical model for the electrolocation in weakly electric fishes. We first investigate the forward complex conductivity problem and derive the approximate boundary conditions on the skin of the fish. Then we provide a dipole approximation for small targets away from the fish. Based on this approximation, we obtain a non-iterative location search algorithm using multi-frequency measurements. We present numerical experiments to illustrate the performance and the stability of the proposed multi-frequency location search algorithm. Finally, in the case of disk- and ellipse-shaped targets, we provide a method to reconstruct separately the conductivity, the permittivity, and the size of the targets from multi-frequency measurements.Comment: 37 pages, 11 figure

    Tuning gastropod locomotion: Modeling the influence of mucus rheology on the cost of crawling

    Get PDF
    Common gastropods such as snails crawl on a solid substrate by propagating muscular waves of shear stress on a viscoelastic mucus. Producing the mucus accounts for the largest component in the gastropod's energy budget, more than twenty times the amount of mechanical work used in crawling. Using a simple mechanical model, we show that the shear-thinning properties of the mucus favor a decrease in the amount of mucus necessary for crawling, thereby decreasing the overall energetic cost of locomotion.Comment: Corrected typo

    Underwater robots equipped with artificial electric sense for the exploration of unconventional aquatic niches

    Get PDF
    International audienceThis article presents different use of the electric field perception in the context of underwater robot navigation. To illustrate the developed navigation behaviours we will introduce a recently launched european project named subCULTron and will show some simulation and experimentation results. The project sub- CULTron aims at achieving long-term collective robot exploration and monitoring of underwater environments. The demonstration will take place in the lagoon of Venice, a large shallow embayment composed of salt turbib water that represents a challenging environment for underwater robots as common sensor like vision or acoustic are difficult to handle. To overcome turbidity and confinement problems our robots will be equipped with artificial electric sensors that will be used as the main sensorial modality for navigation. Electric sense is a bio-inspired sense that has been developed by several species of fish living in turbib and confined underwater environment. In this paper, many different robotic behaviours based on the electric field perception will be presented, in particular we will address reactive navigation, object/robots detection, and object localization and estimation

    Active Electric Imaging: Body-Object Interplay and Object's “Electric Texture”

    Get PDF
    This article deals with the role of fish's body and object's geometry on determining the image spatial shape in pulse Gymnotiforms. This problem was explored by measuring local electric fields along a line on the skin in the presence and absence of objects. We depicted object's electric images at different regions of the electrosensory mosaic, paying particular attention to the perioral region where a fovea has been described. When sensory surface curvature increases relative to the object's curvature, the image details depending on object's shape are blurred and finally disappear. The remaining effect of the object on the stimulus profile depends on the strength of its global polarization. This depends on the length of the object's axis aligned with the field, in turn depending on fish body geometry. Thus, fish's body and self-generated electric field geometries are embodied in this “global effect” of the object. The presence of edges or local changes in impedance at the nearest surface of closely located objects adds peaks to the image profiles (“local effect” or “object's electric texture”). It is concluded that two cues for object recognition may be used by active electroreceptive animals: global effects (informing on object's dimension along the field lines, conductance, and position) and local effects (informing on object's surface). Since the field has fish's centered coordinates, and electrosensory fovea is used for exploration of surfaces, fish fine movements are essential to perform electric perception. We conclude that fish may explore adjacent objects combining active movements and electrogenesis to represent them using electrosensory information

    Species-Specific Diversity of a Fixed Motor Pattern: The Electric Organ Discharge of Gymnotus

    Get PDF
    Understanding fixed motor pattern diversity across related species provides a window for exploring the evolution of their underlying neural mechanisms. The electric organ discharges of weakly electric fishes offer several advantages as paradigmatic models for investigating how a neural decision is transformed into a spatiotemporal pattern of action. Here, we compared the far fields, the near fields and the electromotive force patterns generated by three species of the pulse generating New World gymnotiform genus Gymnotus. We found a common pattern in electromotive force, with the far field and near field diversity determined by variations in amplitude, duration, and the degree of synchronization of the different components of the electric organ discharges. While the rostral regions of the three species generate similar profiles of electromotive force and local fields, most of the species-specific differences are generated in the main body and tail regions of the fish. This causes that the waveform of the field is highly site dependant in all the studied species. These findings support a hypothesis of the relative separation of the electrolocation and communication carriers. The presence of early head negative waves in the rostral region, a species-dependent early positive wave at the caudal region, and the different relationship between the late negative peak and the main positive peak suggest three points of lability in the evolution of the electrogenic system: a) the variously timed neuronal inputs to different groups of electrocytes; b) the appearance of both rostrally and caudally innervated electrocytes, and c) changes in the responsiveness of the electrocyte membrane

    Clinical phenotype and outcome of hepatitis E virus - associated neuralgic amyotrophy

    Get PDF
    Objective: To determine the clinical phenotype and outcome in hepatitis E virus–associated neuralgic amyotrophy (HEV-NA). Methods: Cases of NA were identified in 11 centers from 7 European countries, with retrospective analysis of demographics, clinical/laboratory findings, and treatment and outcome. Cases of HEV-NA were compared with NA cases without evidence of HEV infection. Results: Fifty-seven cases of HEV-NA and 61 NA cases without HEV were studied. Fifty-six of 57 HEV-NA cases were anti-HEV IgM positive; 53/57 were IgG positive. In 38 cases, HEV RNA was recovered from the serum and in 1 from the CSF (all genotype 3). Fifty-one of 57 HEV-NA cases were anicteric; median alanine aminotransferase 259 IU/L (range 12–2,961 IU/L); in 6 cases, liver function tests were normal. HEV-NA cases were more likely to have bilateral involvement (80.0% vs 8.6%, p < 0.001), damage outside the brachial plexus (58.5% vs 10.5%, p < 0.01), including phrenic nerve and lumbosacral plexus injury (25.0% vs 3.5%, p = 0.01, and 26.4% vs 7.0%, p = 0.001), reduced reflexes (p = 0.03), sensory symptoms (p = 0.04) with more extensive damage to the brachial plexus. There was no difference in outcome between the 2 groups at 12 months. Conclusions: Patients with HEV-NA are usually anicteric and have a distinct clinical phenotype, with predominately bilateral asymmetrical involvement of, and more extensive damage to, the brachial plexus. Involvement outside the brachial plexus is more common in HEV-NA. The relationship between HEV and NA is likely to be causal, but is easily overlooked. Patients presenting with NA should be tested for HEV, irrespective of liver function test results. Prospective treatment/outcome studies of HEV-NA are warranted

    An effect of eyestalk ablation on antennular function in the spiny lobster, Panulirus argus

    Full text link
    1. Unilateral removal of the eyestalk (optic ganglia and medulla terminalis) in the Bermuda spiny lobster, Panulirus argus , disrupts normal initiation of feeding activity via chemo-tactile stimulation of the antennule on the side of the ablation. This deficit may be permanent for it has lasted without apparent remission for over five months and two molts. Unilateral eyestalk ablation also produces a temporary increase in antennular cleaning activity directed toward the antennule on the side of the ablation. This effect seems to last for less than 16 days. Unilateral eyestalk ablation does not appreciably disturb spontaneous antennular movements or responses to mechanical stimulation of the antennule on either side. Nor does it destroy the ability of the lobster to give differential responses to mechanical and chemo-tactile stimuli. Most lobsters recover normal sensory and motor functions in antennules that regenerate after amputation of the distal segment and sensory flagellae. In about 1/3 of the animals, however, some form of sensory or motor abnormality is evident in the regenerated antennule. These deficits are ascribed to occasional failure of regenerating neurons to reform appropriate central connections. They do not resemble the deficits following eyestalk ablation. The medulla terminalis is tentatively proposed as the portion of the nervous system critical for normal antennular function that is removed by eyestalk ablation. There seem to be similarities between the effects of eyestalk ablation in the Crustacea as described here and the effects following destruction of portions of the corpora pedunculata in insects. 1. Einseitige Entfernung des Augenstieles (optische Ganglien und Medulla terminalis) bei der Bermuda-Stachellanguste, Panulirus argus , unterbricht auf der operierten Seite den Beginn der normalen Freß-tätigkeit, die durch chemische und taktile Reizung der Antennula eingeleitet wird. Diese Störung kann irreversibel sein, denn sie überdauerte in über 5 Monaten zwei Häutungen.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47096/1/359_2004_Article_BF00340474.pd

    The phylogenetic distribution of electroreception: Evidence for convergent evolution of a primitive vertebrate sense modality

    Full text link
    Specializations for electroreception in sense organs and brain centers are found in a wide variety of fishes and amphibians, though probably in a small minority of teleost taxa. No other group of vertebrates or invertebrates is presently suspected to have adaptations for electroreception in the definition given here. The distribution among fishes is unlike any other sense modality in that it has apparently been invented, lost completely and reinvented several times independently, using distinct receptors and central nuclei in the medulla. There are so far no clearly borderline or transitional fishes, either physiologically or anatomically. We rather expect a few new electroreceptive taxa to be found. The evoked potential method and the newly validated central anatomical criteria provide two useful tools for searching.Although Myxiniformes probably lack electroreception, it is well developed in Petromyzoniformes and in all other non-teleost fishes except Holostei. Thus Elasmobranchia, Holocephala, Dipneusti, Crossopterygii, Polypteriformes and Chondrostei have the physiological and anatomical specializations in a common form consistent with a single origin in primitive vertebrates. Amphibian ancestors probably inherited the system from a stem similar to one of these and passed it on at least to the ambystomatoid and salamandroid urodeles, apparently after losing the kinocilium of the sense cell. The suggestion of electroreception in ichthyophid apodans from skin histology has not been confirmed physiologically, behaviorally or by brain anatomy. With respect to more advanced fishes the most parsimonious interpretation is that the entire system, peripheral and central was lost in ancestors of holostean and teleostean fishes and new systems reinvented in Siluriformes, in Gymnotiformes, in Xenomystinae and in Mormyriformes. These 4 taxa must represent at least two, and probably 3 or 4 independent inventions, presumably from mechanoreceptive lateral line organs and brain centers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25137/1/0000573.pd
    corecore