18 research outputs found

    Macrophage-induced reactive oxygen species promote myometrial contraction and labor-associated mechanisms

    No full text
    At labor, the myometrium is infiltrated by a massive influx of macrophages that secrete high levels of pro-inflammatory cytokines inducing the expression of specific labor-associated markers. However, the interactions between myocytes and macrophages and the role of macrophages in the myometrium at labor remain to be elucidated. In this work, we studied the role of myometrium-infiltrated macrophages and their interaction with myocytes in lipopolysaccharide-induced preterm labor. A co-culture model of human primary myometrial cells and macrophages was developed and validated. Collagen lattices were used to evaluate myocyte contraction. Differentiation steps were assessed by (i) phalloidin and vinculin staining for cytoskeleton reorganization, (ii) gap junction protein alpha 1 expression and scrape loading/dye transfer with Lucifer Yellow for gap junction intercellular communication, and (iii) calcium imaging for cell excitability. We demonstrated that macrophages favored lipopolysaccharide-induced contraction and early differentiation of myometrial cells. Transwell assays showed that previous activation of macrophages by lipopolysaccharide was essential for this differentiation and that macrophage/myocyte interactions involved macrophage release of reactive oxygen species (ROS). The effects of macrophage-released ROS in myometrial cell transactivation were mimicked by H2O2, suggesting that superoxide anion is a major intermediate messenger in macrophage/myocyte crosstalk during labor. These novel findings provide the foundation for innovative approaches to managing preterm labor, specifically the use of antioxidants to inhibit the initial stages of labor before the contractile phenotype has been acquired. In addition, the co-culture model developed by our team could be used in future research to decipher pathophysiological signaling pathways or screen/develop new tocolytics

    Role of Insect and Mammal Glutathione Transferases in Chemoperception

    No full text
    Glutathione transferases (GSTs) are ubiquitous key enzymes with different activities as transferases or isomerases. As key detoxifying enzymes, GSTs are expressed in the chemosensory organs. They fulfill an essential protective role because the chemosensory organs are located in the main entry paths of exogenous compounds within the body. In addition to this protective function, they modulate the perception process by metabolizing exogenous molecules, including tastants and odorants. Chemosensory detection involves the interaction of chemosensory molecules with receptors. GST contributes to signal termination by metabolizing these molecules. By reducing the concentration of chemosensory molecules before receptor binding, GST modulates receptor activation and, therefore, the perception of these molecules. The balance of chemoperception by GSTs has been shown in insects as well as in mammals, although their chemosensory systems are not evolutionarily connected. This review will provide knowledge supporting the involvement of GSTs in chemoperception, describing their localization in these systems as well as their enzymatic capacity toward odorants, sapid molecules, and pheromones in insects and mammals. Their different roles in chemosensory organs will be discussed in light of the evolutionary advantage of the coupling of the detoxification system and chemosensory system through GSTs

    Characterization of rat glutathione transferases in olfactory epithelium and mucus

    No full text
    International audienceThe olfactory epithelium is continuously exposed to exogenous chemicals, including odorants. During the past decade, the enzymes surrounding the olfactory receptors have been shown to make an important contribution to the process of olfaction. Mammalian xenobiotic metabolizing enzymes, such as cytochrome P450, esterases and glutathione transferases (GSTs), have been shown to participate in odorant clearance from the olfactory receptor environment, consequently contributing to the maintenance of sensitivity toward odorants. GSTs have previously been shown to be involved in numerous physiological processes, including detoxification, steroid hormone biosynthesis, and amino acid catabolism. These enzymes ensure either the capture or the glutathione conjugation of a large number of ligands. Using a multi-technique approach (proteomic, immunocytochemistry and activity assays), our results indicate that GSTs play an important role in the rat olfactory process. First, proteomic analysis demonstrated the presence of different putative odorant metabolizing enzymes, including different GSTs, in the rat nasal mucus. Second, GST expression was investigated in situ in rat olfactory tissues using immunohistochemical methods. Third, the activity of the main GST (GSTM2) odorant was studied with in vitro experiments. Recombinant GSTM2 was used to screen a set of odorants and characterize the nature of its interaction with the odorants. Our results support a significant role of GSTs in the modulation of odorant availability for receptors in the peripheral olfactory process

    Characterization of human oxidoreductases involved in aldehyde odorant metabolism

    No full text
    International audienceOxidoreductases are major enzymes of xenobiotic metabolism. Consequently, they are essential in the chemoprotection of the human body. Many xenobiotic metabolism enzymes have been shown to be involved in chemosensory tissue protection. Among them, some were additionally shown to be involved in chemosensory perception, acting in signal termination as well as in the generation of metabolites that change the activation pattern of chemosensory receptors. Oxidoreductases, especially aldehyde dehydrogenases and aldo-keto reductases, are the first barrier against aldehyde compounds, which include numerous odorants. Using a mass spectrometry approach, we characterized the most highly expressed members of these families in the human nasal mucus sampled in the olfactory vicinity. Their expression was also demonstrated using immunohistochemistry in human epitheliums sampled in the olfactory vicinity. Recombinant enzymes corresponding to three highly expressed human oxidoreductases (ALDH1A1, ALDH3A1, AKR1B10) were used to demonstrate the high enzymatic activity of these enzymes toward aldehyde odorants. The structure-function relationship set based on the enzymatic parameters characterization of a series of aldehyde odorant compounds was supported by the X-ray structure resolution of human ALDH3A1 in complex with octanal

    Structure–activity analysis suggests an olfactory function for the unique antennal delta glutathione transferase of <i>Apis mellifera</i>

    No full text
    International audienceGlutathione transferases (GST) are detoxification enzymes that conjugate glutathione to a wide array of molecules. In the honey bee Apis mellifera, AmGSTD1 is the sole member of the delta class of GSTs, with expression in antennae. Here, we structurally and biochemically characterized AmGSTD1 to elucidate its function. We showed that AmGSTD1 can efficiently catalyse the glutathione conjugation of classical GST substrates. Additionally, AmGSTD1 exhibits binding properties with a range of odorant compounds. AmGSTD1 has a peculiar interface with a structural motif we propose to call 'sulfur sandwich'. This motif consists of a cysteine disulfide bridge sandwiched between the sulfur atoms of two methionine residues and is stabilized by CH
S hydrogen bonds and S
S sigma-hole interactions. Thermal stability studies confirmed that this motif is important for AmGSTD1 stability and, thus, could facilitate its functions in olfaction

    Novel Fat Taste Receptor Agonists Curtail Progressive Weight Gain in Obese Male MiceSummary

    No full text
    Background &amp; Aims: The spontaneous preference for dietary lipids is principally regulated by 2 lingual fat taste receptors, CD36 and GPR120. Obese animals and most of human subjects exhibit low orosensory perception of dietary fat because of malfunctioning of these taste receptors. Our aim was to target the 2 fat taste receptors by newly synthesized high affinity fatty acid agonists to decrease fat-rich food intake and obesity. Methods: We synthesized 2 fat taste receptor agonists (FTA), NKS-3 (CD36 agonist) and NKS-5 (CD36 and GPR120 agonist). We determined their molecular dynamic interactions with fat taste receptors and the effect on Ca2+ signaling in mouse and human taste bud cells (TBC). In C57Bl/6 male mice, we assessed their gustatory perception and effects of their lingual application on activation of tongue-gut loop. We elucidated their effects on obesity and its related parameters in male mice fed a high-fat diet. Results: The two FTA, NKS-3 and NKS-5, triggered higher Ca2+ signaling than a dietary long-chain fatty acid in human and mouse TBC. Mice exhibited a gustatory attraction for these compounds. In conscious mice, the application of FTA onto the tongue papillae induced activation of tongue-gut loop, marked by the release of pancreato-bile juice into collecting duct and cholecystokinin and peptide YY into blood stream. Daily intake of NKS-3 or NKS-5 via feeding bottles decreased food intake and progressive weight gain in obese mice but not in control mice. Conclusions: Our results show that targeting fat sensors in the tongue by novel chemical fat taste agonists might represent a new strategy to reduce obesity

    Valeurs toxicologiques de rĂ©fĂ©rence (VTR) - Elaboration de VTR par voie respiratoire pour l’acrolĂ©ine (CAS n°107-02-8)

    No full text
    Citation suggĂ©rĂ©e :Anses. (2022). Valeurs toxicologiques de rĂ©fĂ©rence (VTR). Elaboration de VTR par voie respiratoire pour l’acrolĂ©ine (CAS n°107-02-8). (saisine 2021-MPEX-0149). Maisons-Alfort : Anses, 90 p.Une valeur toxicologique de rĂ©fĂ©rence (VTR) est un indice toxicologique qui permet de qualifier ou de quantifier un risque pour la santĂ© humaine. Elle Ă©tablit le lien entre une exposition Ă  une substance toxique et l’occurrence d’un effet sanitaire indĂ©sirable. Les VTR sont spĂ©cifiques d’une durĂ©e d’exposition (aiguĂ«, subchronique ou chronique) et d’une voie d’exposition (orale, respiratoire, etc.). La construction des VTR diffĂšre en fonction des connaissances ou des hypothĂšses formulĂ©es sur les mĂ©canismes d’action des substances. Actuellement, l’hypothĂšse par dĂ©faut est de considĂ©rer une relation entre l’exposition, ou la dose, et l’effet, ou la rĂ©ponse. En l’état actuel des connaissances et par dĂ©faut, on considĂšre gĂ©nĂ©ralement que, pour les effets non cancĂ©rogĂšnes, la toxicitĂ© ne s’exprime qu’au-delĂ  d’un seuil de dose (Anses, 2017).En pratique, la construction de VTR comprend les quatre Ă©tapes suivantes :- recenser et analyser les donnĂ©es de toxicitĂ© disponibles, sur la base dâ€˜Ă©tudes Ă©pidĂ©miologiques et/ou expĂ©rimentales,- identifier le ou les organes cibles et l’effet critique ;- identifier l’hypothĂšse de construction, Ă  seuil ou sans seuil de dose, en fonction du mode d’action de la substance,- choisir une Ă©tude clĂ© de bonne qualitĂ© scientifique permettant gĂ©nĂ©ralement d’établir une relation dose – rĂ©ponse ;- dĂ©finir un point de dĂ©part (PoD) chez l’Homme ou l’animal Ă  partir de cette Ă©tude, Ă©ventuellement dans le cas d’un PoD obtenu chez l’animal, ajuster ce PoD Ă  l’Homme ;- pour une VTR Ă  seuil, appliquer des facteurs d’incertitude Ă  ce PoD de maniĂšre Ă  dĂ©river une VTR applicable Ă  l’ensemble de la population ;- pour une VTR sans seuil, rĂ©aliser une extrapolation linĂ©aire Ă  l’origine afin de dĂ©terminer un excĂšs de risque unitaire2.L’élaboration des VTR suit une approche trĂšs structurĂ©e et exigeante qui implique des Ă©valuations collectives par des groupes de spĂ©cialistes.[Saisines liĂ©es n°2020-MPEX-0184, 2008-SA-0205, 2011-SA-0354

    Valeurs toxicologiques de rĂ©fĂ©rence (VTR) - Elaboration de VTR par voie respiratoire pour l’acrolĂ©ine (CAS n°107-02-8)

    No full text
    Citation suggĂ©rĂ©e :Anses. (2022). Valeurs toxicologiques de rĂ©fĂ©rence (VTR). Elaboration de VTR par voie respiratoire pour l’acrolĂ©ine (CAS n°107-02-8). (saisine 2021-MPEX-0149). Maisons-Alfort : Anses, 90 p.Une valeur toxicologique de rĂ©fĂ©rence (VTR) est un indice toxicologique qui permet de qualifier ou de quantifier un risque pour la santĂ© humaine. Elle Ă©tablit le lien entre une exposition Ă  une substance toxique et l’occurrence d’un effet sanitaire indĂ©sirable. Les VTR sont spĂ©cifiques d’une durĂ©e d’exposition (aiguĂ«, subchronique ou chronique) et d’une voie d’exposition (orale, respiratoire, etc.). La construction des VTR diffĂšre en fonction des connaissances ou des hypothĂšses formulĂ©es sur les mĂ©canismes d’action des substances. Actuellement, l’hypothĂšse par dĂ©faut est de considĂ©rer une relation entre l’exposition, ou la dose, et l’effet, ou la rĂ©ponse. En l’état actuel des connaissances et par dĂ©faut, on considĂšre gĂ©nĂ©ralement que, pour les effets non cancĂ©rogĂšnes, la toxicitĂ© ne s’exprime qu’au-delĂ  d’un seuil de dose (Anses, 2017).En pratique, la construction de VTR comprend les quatre Ă©tapes suivantes :- recenser et analyser les donnĂ©es de toxicitĂ© disponibles, sur la base dâ€˜Ă©tudes Ă©pidĂ©miologiques et/ou expĂ©rimentales,- identifier le ou les organes cibles et l’effet critique ;- identifier l’hypothĂšse de construction, Ă  seuil ou sans seuil de dose, en fonction du mode d’action de la substance,- choisir une Ă©tude clĂ© de bonne qualitĂ© scientifique permettant gĂ©nĂ©ralement d’établir une relation dose – rĂ©ponse ;- dĂ©finir un point de dĂ©part (PoD) chez l’Homme ou l’animal Ă  partir de cette Ă©tude, Ă©ventuellement dans le cas d’un PoD obtenu chez l’animal, ajuster ce PoD Ă  l’Homme ;- pour une VTR Ă  seuil, appliquer des facteurs d’incertitude Ă  ce PoD de maniĂšre Ă  dĂ©river une VTR applicable Ă  l’ensemble de la population ;- pour une VTR sans seuil, rĂ©aliser une extrapolation linĂ©aire Ă  l’origine afin de dĂ©terminer un excĂšs de risque unitaire2.L’élaboration des VTR suit une approche trĂšs structurĂ©e et exigeante qui implique des Ă©valuations collectives par des groupes de spĂ©cialistes.[Saisines liĂ©es n°2020-MPEX-0184, 2008-SA-0205, 2011-SA-0354

    Valeurs toxicologiques de rĂ©fĂ©rence (VTR) - Elaboration de VTR par voie respiratoire pour l’acrolĂ©ine (CAS n°107-02-8)

    No full text
    Citation suggĂ©rĂ©e :Anses. (2022). Valeurs toxicologiques de rĂ©fĂ©rence (VTR). Elaboration de VTR par voie respiratoire pour l’acrolĂ©ine (CAS n°107-02-8). (saisine 2021-MPEX-0149). Maisons-Alfort : Anses, 90 p.Une valeur toxicologique de rĂ©fĂ©rence (VTR) est un indice toxicologique qui permet de qualifier ou de quantifier un risque pour la santĂ© humaine. Elle Ă©tablit le lien entre une exposition Ă  une substance toxique et l’occurrence d’un effet sanitaire indĂ©sirable. Les VTR sont spĂ©cifiques d’une durĂ©e d’exposition (aiguĂ«, subchronique ou chronique) et d’une voie d’exposition (orale, respiratoire, etc.). La construction des VTR diffĂšre en fonction des connaissances ou des hypothĂšses formulĂ©es sur les mĂ©canismes d’action des substances. Actuellement, l’hypothĂšse par dĂ©faut est de considĂ©rer une relation entre l’exposition, ou la dose, et l’effet, ou la rĂ©ponse. En l’état actuel des connaissances et par dĂ©faut, on considĂšre gĂ©nĂ©ralement que, pour les effets non cancĂ©rogĂšnes, la toxicitĂ© ne s’exprime qu’au-delĂ  d’un seuil de dose (Anses, 2017).En pratique, la construction de VTR comprend les quatre Ă©tapes suivantes :- recenser et analyser les donnĂ©es de toxicitĂ© disponibles, sur la base dâ€˜Ă©tudes Ă©pidĂ©miologiques et/ou expĂ©rimentales,- identifier le ou les organes cibles et l’effet critique ;- identifier l’hypothĂšse de construction, Ă  seuil ou sans seuil de dose, en fonction du mode d’action de la substance,- choisir une Ă©tude clĂ© de bonne qualitĂ© scientifique permettant gĂ©nĂ©ralement d’établir une relation dose – rĂ©ponse ;- dĂ©finir un point de dĂ©part (PoD) chez l’Homme ou l’animal Ă  partir de cette Ă©tude, Ă©ventuellement dans le cas d’un PoD obtenu chez l’animal, ajuster ce PoD Ă  l’Homme ;- pour une VTR Ă  seuil, appliquer des facteurs d’incertitude Ă  ce PoD de maniĂšre Ă  dĂ©river une VTR applicable Ă  l’ensemble de la population ;- pour une VTR sans seuil, rĂ©aliser une extrapolation linĂ©aire Ă  l’origine afin de dĂ©terminer un excĂšs de risque unitaire2.L’élaboration des VTR suit une approche trĂšs structurĂ©e et exigeante qui implique des Ă©valuations collectives par des groupes de spĂ©cialistes.[Saisines liĂ©es n°2020-MPEX-0184, 2008-SA-0205, 2011-SA-0354
    corecore