10 research outputs found

    Using Paleogenomics to Study the Evolution of Gene Families: Origin and Duplication History of the Relaxin Family Hormones and Their Receptors

    Get PDF
    Recent progress in the analysis of whole genome sequencing data has resulted in the emergence of paleogenomics, a field devoted to the reconstruction of ancestral genomes. Ancestral karyotype reconstructions have been used primarily to illustrate the dynamic nature of genome evolution. In this paper, we demonstrate how they can also be used to study individual gene families by examining the evolutionary history of relaxin hormones (RLN/INSL) and relaxin family peptide receptors (RXFP). Relaxin family hormones are members of the insulin superfamily, and are implicated in the regulation of a variety of primarily reproductive and neuroendocrine processes. Their receptors are G-protein coupled receptors (GPCR's) and include members of two distinct evolutionary groups, an unusual characteristic. Although several studies have tried to elucidate the origins of the relaxin peptide family, the evolutionary origin of their receptors and the mechanisms driving the diversification of the RLN/INSL-RXFP signaling systems in non-placental vertebrates has remained elusive. Here we show that the numerous vertebrate RLN/INSL and RXFP genes are products of an ancestral receptor-ligand system that originally consisted of three genes, two of which apparently trace their origins to invertebrates. Subsequently, diversification of the system was driven primarily by whole genome duplications (WGD, 2R and 3R) followed by almost complete retention of the ligand duplicates in most vertebrates but massive loss of receptor genes in tetrapods. Interestingly, the majority of 3R duplicates retained in teleosts are potentially involved in neuroendocrine regulation. Furthermore, we infer that the ancestral AncRxfp3/4 receptor may have been syntenically linked to the AncRln-like ligand in the pre-2R genome, and show that syntenic linkages among ligands and receptors have changed dynamically in different lineages. This study ultimately shows the broad utility, with some caveats, of incorporating paleogenomics data into understanding the evolution of gene families

    Research of Interindividual Differences in Physiological Response under Hot-Dry and Warm-Wet Climates

    No full text
    Somatotype and habitus parameters may affect physiological control system, so the changes of physiological parameters are not the same when various people work in hot-dry and warm-wet climates. In this paper, a chamber built in Tianjin University was used to simulate comfortable, hot-dry and warm-wet climates. Sixty healthy university students were selected as subjects who were divided into four groups based on somatotype and habitus differences. The subjects were asked to exercise on a treadmill at moderate and heavy work intensities. Physiological parameters (rectal temperature and heart rate) were measured after every 10-min work in the climate chamber. For different groups, the change trends of physiological parameters were different. With the enhancement of experimental conditions, the differences among four groups were weakened. Body surface area per unit of body mass (BSA/mass), percentage of body fat (%fat), and maximum oxygen consumption per unit of body mass (VO2max/mass) were adopt to establish a revised body characteristic index (RBCI). RBCI was proved having significant correlation with physiological parameters, which means RBCI as the combined factors of somatotype and habitus parameters can be applied to evaluate the effect of individual characteristics on physiological systems

    Voglibose Regulates the Secretion of GLP-1 Accompanied by Amelioration of Ileal Inflammatory Damage and Endoplasmic Reticulum Stress in Diabetic KKAy Mice

    No full text
    Voglibose is an α-glycosidase inhibitor that improves postprandial hyperglycemia and increases glucagon-like peptide-1 (GLP-1) secretion in patients with type 2 diabetes. Recently, there has been increasing interest in the anti-inflammatory effects of voglibose on the intestine, but the underlying mechanism is not clear. This study evaluated the effects and mechanisms of voglibose on glycemic control and intestinal inflammation. Type 2 diabetic KKAy mice were treated with voglibose (1 mg/kg) by oral gavage once daily. After 8 weeks, glucose metabolism, levels of short-chain fatty acids (SCFAs), systematic inflammatory factors, intestinal integrity and inflammation were evaluated using hematoxylin and eosin staining, immunohistochemistry, immunofluorescence and Western blot analysis. Voglibose ameliorated glucose metabolism by enhancing basal- and glucose-dependent GLP-1 secretion. Several beneficial SCFAs, such as acetic acid and propionic acid, were increased by voglibose in the fecal sample. Additionally, voglibose notably decreased the proportion of pro-inflammatory macrophages and the expression of nuclear factor kappa B but increased the expression of tight junction proteins in the ileum, thus markedly improving intestinal inflammatory damage and reducing the systematic inflammatory factors. Ileal genomics and protein validation suggested that voglibose attenuated inositol-requiring protein 1α-X-box binding protein 1-mediated endoplasmic reticulum stress (ERS). Together, these results showed that voglibose enhanced the secretion of GLP-1, which contributed to the glycemic control in KKAy mice at least in part by regulating intestinal inflammation and the expression of ERS factors
    corecore