133 research outputs found

    Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background

    Get PDF
    The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability

    Health for sale: the medicinal plant markets in Trujillo and Chiclayo, Northern Peru

    Get PDF
    Traditional methods of healing have been beneficial in many countries with or without access to conventional allopathic medicine. In the United States, these traditional practices are increasingly being sought after for illnesses that cannot be easily treated by allopathic medicine. More and more people are becoming interested in the knowledge maintained by traditional healers and in the diversity of medicinal plants that flourish in areas like Northern Peru. While scientific studies of medicinal plants are underway, concern has arisen over the preservation of both the large diversity of medicinal plants and the traditional knowledge of healing methods that accompanies them. To promote further conservation work, this study attempted to document the sources of the most popular and rarest medicinal plants sold in the markets of Trujillo (Mayorista and Hermelinda) and Chiclayo (Modelo and Moshoqueque), as well as to create an inventory of the plants sold in these markets, which will serve as a basis for comparison with future inventories. Individual markets and market stalls were subjected to cluster analysis based on the diversity of the medicinal plants they carry. The results show that markets were grouped based on the presence of: (1) common exotic medicinal plants; (2) plants used by laypeople for self-medication related to common ailments ("everyday remedies"); (3) specialized medicinal plants used by curanderos or traditional healers; and (4) highly "specialized" plants used for magical purposes. The plant trade in the study areas seems to correspond well with the specific health care demands from clientele in those areas. The specific market patterns of plant diversity observed in the present study represent a foundation for comparative market research in Peru and elsewhere

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Adjustment for time-invariant and time-varying confounders in ‘unexplained residuals’ models for longitudinal data within a causal framework and associated challenges

    Get PDF
    ‘Unexplained residuals’ models have been used within lifecourse epidemiology to model an exposure measured longitudinally at several time points in relation to a distal outcome. It has been claimed that these models have several advantages, including: the ability to estimate multiple total causal effects in a single model, and additional insight into the effect on the outcome of greater-than-expected increases in the exposure compared to traditional regression methods. We evaluate these properties and prove mathematically how adjustment for confounding variables must be made within this modelling framework. Importantly, we explicitly place unexplained residual models in a causal framework using directed acyclic graphs. This allows for theoretical justification of appropriate confounder adjustment and provides a framework for extending our results to more complex scenarios than those examined in this paper. We also discuss several interpretational issues relating to unexplained residual models within a causal framework. We argue that unexplained residual models offer no additional insights compared to traditional regression methods, and, in fact, are more challenging to implement; moreover, they artificially reduce estimated standard errors. Consequently, we conclude that unexplained residual models, if used, must be implemented with great care

    Olfactory Enrichment Influences Adult Neurogenesis Modulating GAD67 and Plasticity-Related Molecules Expression in Newborn Cells of the Olfactory Bulb

    Get PDF
    The olfactory bulb (OB) is a highly plastic region of the adult mammalian brain characterized by continuous integration of inhibitory interneurons of the granule (GC) and periglomerular cell (PGC) types. Adult-generated OB interneurons are selected to survive in an experience-dependent way but the mechanisms that mediate the effects of experience on OB neurogenesis are unknown. Here we focus on the new-generated PGC population which is composed by multiple subtypes. Using paradigms of olfactory enrichment and/or deprivation combined to BrdU injections and quantitative confocal immunohistochemical analyses, we studied the effects of olfactory experience on adult-generated PGCs at different survival time and compared PGC to GC modulation. We show that olfactory enrichment similarly influences PGCs and GCs, increasing survival of newborn cells and transiently modulating GAD67 and plasticity-related molecules expression. However, PGC maturation appears to be delayed compared to GCs, reflecting a different temporal dynamic of adult generated olfactory interneuron integration. Moreover, olfactory enrichment or deprivation do not selectively modulate the survival of specific PGC phenotypes, supporting the idea that the integration rate of distinct PGC subtypes is independent from olfactory experience

    Salt Stress Induced Variation in DNA Methylation Pattern and Its Influence on Gene Expression in Contrasting Rice Genotypes

    Get PDF
    BACKGROUND: Salinity is a major environmental factor limiting productivity of crop plants including rice in which wide range of natural variability exists. Although recent evidences implicate epigenetic mechanisms for modulating the gene expression in plants under environmental stresses, epigenetic changes and their functional consequences under salinity stress in rice are underexplored. DNA methylation is one of the epigenetic mechanisms regulating gene expression in plant's responses to environmental stresses. Better understanding of epigenetic regulation of plant growth and response to environmental stresses may create novel heritable variation for crop improvement. METHODOLOGY/PRINCIPAL FINDINGS: Methylation sensitive amplification polymorphism (MSAP) technique was used to assess the effect of salt stress on extent and patterns of DNA methylation in four genotypes of rice differing in the degree of salinity tolerance. Overall, the amount of DNA methylation was more in shoot compared to root and the contribution of fully methylated loci was always more than hemi-methylated loci. Sequencing of ten randomly selected MSAP fragments indicated gene-body specific DNA methylation of retrotransposons, stress responsive genes, and chromatin modification genes, distributed on different rice chromosomes. Bisulphite sequencing and quantitative RT-PCR analysis of selected MSAP loci showed that cytosine methylation changes under salinity as well as gene expression varied with genotypes and tissue types irrespective of the level of salinity tolerance of rice genotypes. CONCLUSIONS/SIGNIFICANCE: The gene body methylation may have an important role in regulating gene expression in organ and genotype specific manner under salinity stress. Association between salt tolerance and methylation changes observed in some cases suggested that many methylation changes are not "directed". The natural genetic variation for salt tolerance observed in rice germplasm may be independent of the extent and pattern of DNA methylation which may have been induced by abiotic stress followed by accumulation through the natural selection process

    Space Telescope and Optical Reverberation Mapping Project. IX. Velocity–Delay Maps for Broad Emission Lines in NGC 5548

    Get PDF
    In this contribution, we achieve the primary goal of the active galactic nucleus (AGN) STORM campaign by recovering velocity–delay maps for the prominent broad emission lines (Lyα, C iv, He ii, and Hβ) in the spectrum of NGC 5548. These are the most detailed velocity–delay maps ever obtained for an AGN, providing unprecedented information on the geometry, ionization structure, and kinematics of the broad-line region. Virial envelopes enclosing the emission-line responses show that the reverberating gas is bound to the black hole. A stratified ionization structure is evident. The He ii response inside 5–10 lt-day has a broad single-peaked velocity profile. The Lyα, C iv, and Hβ responses extend from inside 2 to outside 20 lt-day, with double peaks at ±2500 km s−1 in the 10–20 lt-day delay range. An incomplete ellipse in the velocity–delay plane is evident in Hβ. We interpret the maps in terms of a Keplerian disk with a well-defined outer rim at R = 20 lt-day. The far-side response is weaker than that from the near side. The line-center delay τ=(R/c)(1sini)5\tau =(R/c)(1-\sin i)\approx 5 days gives the inclination i ≈ 45°. The inferred black hole mass is MBH ≈ 7 × 107 M⊙. In addition to reverberations, the fit residuals confirm that emission-line fluxes are depressed during the "BLR Holiday" identified in previous work. Moreover, a helical "Barber-Pole" pattern, with stripes moving from red to blue across the C iv and Lyα line profiles, suggests azimuthal structure rotating with a 2 yr period that may represent precession or orbital motion of inner-disk structures casting shadows on the emission-line region farther out
    corecore