2,288 research outputs found

    Twitter v. Musk: The Trial of the Century That Wasn\u27t

    Get PDF
    The months-long saga over Elon Musk\u27s on-again, off-again acquisition of Twitter provided considerable entertainment for lawyers and laypeople alike. But for those of us who teach business law, it also provided a unique (and in certain ways, vexing) opportunity to show real-time examples of the legal principles that are the grist for courses in contracts, corporations, corporate finance, and mergers and acquisitions. Both of us found ourselves incorporating the saga into our classroom discussions, which in turn informed our own thinking about how the dynamic played out. Although we were both relatively active on social media (indeed on Twitter itself) as the saga unfolded, the final closing of the deal in late October has given us a chance to reflect on our own takeaways in hindsight

    A close association of freedom from pain, migraine-related functional disability, and other outcomes: results of a post hoc analysis of randomized lasmiditan studies SAMURAI and SPARTAN

    Get PDF
    Background: While pain freedom at 2 h is a key primary outcome for current trials for acute treatment of migraine, the relationship between the degree of head pain and other efficacy measures at 2 h has rarely been explored. Following lasmiditan treatment of a migraine attack with moderate or severe head pain, we contrast those who achieve pain freedom with those who achieve mild pain but not pain freedom 2 h post dosing. Methods: Patient-level data were pooled across studies and treatment arms from two Phase 3 trials comparing lasmiditan and placebo, SAMURAI and SPARTAN. This post hoc analysis assessed freedom from the most bothersome symptom (MBS), freedom from migraine-related functional disability (disability), and improved patient global impression of change (PGIC) in patients who achieved 2 h pain freedom compared to those who experienced 2 h mild pain. Mild pain differs from pain relief which is defined as either mild pain or pain freedom. Results: Patients who achieved 2 h pain freedom (N = 913), in comparison with those with 2 h mild pain (N = 864), were significantly more likely to experience MBS freedom (91.9% vs. 44.9%), disability freedom (87.1% and 13.4%), and improved PGIC (86.5% and 31.5%) (p \u3c 0.001 for all combinations). In addition, more patients who were pain free experienced both 2 h MBS freedom and 2 h functional disability freedom (83.6%) compared to those with mild pain (10.8%; p \u3c 0.001). The proportion of patients with pain freedom who did not achieve either MBS or disability freedom (4.6%) was lower than in patients with mild pain (52.4%). Lastly, 55.2% of patients experienced mild pain before disability freedom compared to 72.1% who experienced pain freedom and disability freedom at the same time. Conclusions: This study demonstrated that, at 2 h post treatment, patients who were pain free were more likely to achieve other outcomes including freedom from their MBS, freedom from migraine-related functional disability, and improved PGIC compared to those with mild pain, confirming that 2 h pain freedom is more robustly associated with other clinical outcomes than the 2 h mild pain endpoint. Trial Registration: SAMURAI (NCT02439320); SPARTAN (NCT02605174)

    Effects of Bosutinib Treatment on Renal Function in Patients With Philadelphia Chromosome-Positive Leukemias

    Get PDF
    Abstract Background The purpose of the study was to assess renal function in patients with Philadelphia chromosome-positive leukemias receiving bosutinib or imatinib. Patients and Methods Patients received first-line bosutinib (n = 248) or imatinib (n = 251; phase III trial), or second-line or later bosutinib (phase I/II trial; n = 570). Adverse events (AEs) and changes from baseline in estimated glomerular filtration rate (eGFR) and serum creatinine were assessed. Results Time from the last patient's first dose to data cutoff was ≥ 48 months. Renal AEs were reported in 73/570 patients (13%) receiving second-line or later bosutinib, and in 22/248 (9%) and 16/251 (6%) receiving first-line bosutinib and imatinib, respectively. eGFR in patients receiving bosutinib declined over time with more patients developing Grade ≥ 3b eGFR ( 2 according to the Modification of Diet in Renal Disease method) with second-line or later bosutinib (139/570, 24%) compared with first-line bosutinib (26/248, 10%) and imatinib (25/251, 10%); time to Grade ≥ 3b eGFR was shortest with second-line or later bosutinib. Similar proportions of patients receiving second-line or later bosutinib (74/139, 53%), first-line bosutinib (15/26, 58%), and first-line imatinib (15/25, 60%) improved to ≥ 45 mL/min/1.73 m 2 eGFR as of the last follow-up. In a regression analysis, first-line treatment with bosutinib versus imatinib was not a significant predictor of Grade ≥ 3b eGFR. Conclusion Long-term bosutinib treatment is associated with an apparently reversible decline in renal function with frequency and characteristics similar to renal decline observed with long-term imatinib treatment. Patients with risk factors for Grade ≥ 3b eGFR should be monitored closely

    Identification and Characterization of MtoA: A Decaheme c-Type Cytochrome of the Neutrophilic Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1

    Get PDF
    The Gram-negative bacterium Sideroxydans lithotrophicus ES-1 (ES-1) grows on FeCO3 or FeS at oxic–anoxic interfaces at circumneutral pH, and the ES-1-mediated Fe(II) oxidation occurs extracellularly. However, the molecular mechanisms underlying ES-1’s ability to oxidize Fe(II) remain unknown. Survey of the ES-1 genome for candidate genes for microbial extracellular Fe(II) oxidation revealed that it contained a three-gene cluster encoding homologs of Shewanella oneidensis MR-1 (MR-1) MtrA, MtrB, and CymA that are involved in extracellular Fe(III) reduction. Homologs of MtrA and MtrB were also previously shown to be involved in extracellular Fe(II) oxidation by Rhodopseudomonas palustris TIE-1. To distinguish them from those found in MR-1, the identified homologs were named MtoAB and CymAES-1. Cloned mtoA partially complemented an MR-1 mutant without MtrA with regards to ferrihydrite reduction. Characterization of purified MtoA showed that it was a decaheme c-type cytochrome and oxidized soluble Fe(II). Oxidation of Fe(II) by MtoA was pH- and Fe(II)-complexing ligand-dependent. Under conditions tested, MtoA oxidized Fe(II) from pH 7 to pH 9 with the optimal rate at pH 9. MtoA oxidized Fe(II) complexed with different ligands at different rates. The reaction rates followed the order Fe(II)Cl2 > Fe(II)–citrate > Fe(II)–NTA > Fe(II)–EDTA with the second-order rate constants ranging from 6.3 × 10-3 µM-1 s-1 for oxidation of Fe(II)Cl2 to 1.0 × 10-3 µM-1 s-1 for oxidation of Fe(II)–EDTA. Thermodynamic modeling showed that redox reaction rates for the different Fe(II)-complexes correlated with their respective estimated reaction-free energies. Collectively, these results demonstrate that MtoA is a functional Fe(II)-oxidizing protein that, by working in concert with MtoB and CymAES-1, may oxidize Fe(II) at the bacterial surface and transfer released electrons across the bacterial cell envelope to the quinone pool in the inner membrane during extracellular Fe(II) oxidation by ES-1

    Identification and characterization of MtoA: a decaheme \u3ci\u3ec\u3c/i\u3e-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1

    Get PDF
    The Gram-negative bacterium Sideroxydans lithotrophicus ES-1(ES-1) grows on FeCO3 or FeS at oxic–anoxic interfaces at circumneutral pH, and the ES-1-mediated Fe(II) oxidation occurs extracellularly. However, the molecular mechanisms underlying ES-1’s ability to oxidize Fe(II) remain unknown. Survey of the ES-1 genome for candidate genes formicrobial extracellular Fe(II) oxidation revealed that it contained a three-genecluster encoding homologs of Shewanella oneidensis MR-1(MR-1) MtrA, MtrB, and CymA that are involved in extracellular Fe(III) reduction. Homologs of MtrA and MtrB were also previously shown to be involved in extracellular Fe(II) oxidation by Rhodopseudomonas palustris TIE-1. To distinguish them from those found in MR-1, the identified homologs were named MtoAB andCymAES-1. Cloned mtoA partially complemented an MR-1 mutant without MtrA with regards to ferrihydrite reduction. Characterization of purified MtoA showed that it was a decaheme c-type cytochrome and oxidized soluble Fe(II). Oxidation of Fe(II) by MtoA was pH- and Fe (II) – complexing ligand-dependent.Under conditions tested, MtoA oxidized Fe(II) from pH 7 to pH 9 with the optimal rate at pH 9. MtoA oxidized Fe(II) complexed with different ligands at different rates. The reaction rates followed the order Fe(II)Cl2\u3e Fe(II) –citrate\u3e Fe(II)–NTA\u3eFe(II)–EDTA with the second-order rate constants ranging from 6.3×10−3μM−1s−1 for oxidation of Fe(II) Cl2 to 1.0 × 10−3 μM−1s−1 for oxidation of Fe (II)–EDTA
    corecore