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The Gram-negative bacterium Sideroxydans lithotrophicus ES-1 (ES-1) grows on FeCO3
or FeS at oxic–anoxic interfaces at circumneutral pH, and the ES-1-mediated Fe(II) oxida-
tion occurs extracellularly. However, the molecular mechanisms underlying ES-1’s ability
to oxidize Fe(II) remain unknown. Survey of the ES-1 genome for candidate genes for
microbial extracellular Fe(II) oxidation revealed that it contained a three-gene cluster encod-
ing homologs of Shewanella oneidensis MR-1 (MR-1) MtrA, MtrB, and CymA that are
involved in extracellular Fe(III) reduction. Homologs of MtrA and MtrB were also previously
shown to be involved in extracellular Fe(II) oxidation by Rhodopseudomonas palustris TIE-
1. To distinguish them from those found in MR-1, the identified homologs were named
MtoAB and CymAES-1. Cloned mtoA partially complemented an MR-1 mutant without
MtrA with regards to ferrihydrite reduction. Characterization of purified MtoA showed that
it was a decaheme c-type cytochrome and oxidized soluble Fe(II). Oxidation of Fe(II) by
MtoA was pH- and Fe(II)-complexing ligand-dependent. Under conditions tested, MtoA
oxidized Fe(II) from pH 7 to pH 9 with the optimal rate at pH 9. MtoA oxidized Fe(II)
complexed with different ligands at different rates. The reaction rates followed the order
Fe(II)Cl2 > Fe(II)–citrate > Fe(II)–NTA > Fe(II)–EDTA with the second-order rate constants
ranging from 6.3 × 10−3 μM−1 s−1 for oxidation of Fe(II)Cl2 to 1.0 × 10−3 μM−1 s−1 for oxi-
dation of Fe(II)–EDTA. Thermodynamic modeling showed that redox reaction rates for the
different Fe(II)-complexes correlated with their respective estimated reaction-free energies.
Collectively, these results demonstrate that MtoA is a functional Fe(II)-oxidizing protein that,
by working in concert with MtoB and CymAES-1, may oxidize Fe(II) at the bacterial surface
and transfer released electrons across the bacterial cell envelope to the quinone pool in
the inner membrane during extracellular Fe(II) oxidation by ES-1.
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INTRODUCTION
The contribution of Fe(II)-oxidizing bacteria (FeOB) to iron
cycling in freshwater, groundwater, and marine environments, as
well as in most soils and sediments, has been well recognized
(Emerson et al., 2010). A variety of neutrophilic and acidophilic
Fe(II)-oxidizing microorganisms have the ability to derive energy
for growth from the oxidation of dissolved or structural Fe(II)
under either oxic or anoxic conditions. Unlike aerobic acidophilic
or anaerobic neutrophilic FeOB, the geologic importance of aer-
obic neutrophilic FeOB has long been neglected because of the
rapid auto-oxidation of Fe(II) by O2 at circumneutral pH. How-
ever, recent studies indicate that aerobic neutrophilic FeOB would
play a key role in microoxic niches with low levels of O2 con-
centration, where microbial Fe(II)-oxidation can compete with
the chemical oxidation of Fe(II). For example, the Gram-negative

bacterium Sideroxydans lithotrophicus ES-1 (ES-1), originally iso-
lated from the ground water with Fe(II) at neutral pH in MI,
USA, grows on FeCO3 or FeS at oxic–anoxic interfaces (Emerson
and Moyer, 1997; Emerson et al., 2007). ES-1 does not grow on
Mn(II) oxides, sulfide, or organic carbon sources, such as acetate,
pyruvate, and glucose, and does not reduce Fe(III) oxides. Fe(III)
(oxy)(hydr)oxide precipitates are closely associated with the ES-1
cells, but do not form sheath- or stalk-like structures (Emerson
and Moyer, 1997). Recently, the ES-1 genome was sequenced
(http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi). However,
the molecular mechanism by which ES-1 oxidizes Fe(II) remains
unknown.

Because Fe(III) oxides produced from biotic Fe(II)-oxidation
are usually sparingly soluble at circumneutral pH and in
the absence of complexing ligands, bacteria oxidize Fe(II)
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extracellularly presumably to avoid accumulation of Fe(III) oxides
inside their cells. To overcome the physical separation between the
bacterial inner membrane where microbial oxidases are located
and bacterial cell surface, FeOB have evolved different electron
transfer pathways that link the inner membrane to the cell sur-
face. The pathways identified to date include Cyc-2/Rus/Cyc-1
of Acidithiobacillus ferrooxidans, PioABC of Rhodopseudomonas
palustris TIE-1 and FoxEYZ of Rhodobacter strain SW2 (Appia-
Ayme et al., 1999; Yarzabal et al., 2002; Croal et al., 2007; Jiao
and Newman, 2007; Castelle et al., 2008). Although these systems
are phylogenetically unrelated, they all have at least one c-type
cytochrome (c-Cyt) as a key electron transfer protein. These c-Cyts
work in concert with other proteins, often in the form of protein–
protein complexes that can span the entire microbial cell envelope
to facilitate electron conductance between the inner membrane
and Fe(II) external to the bacterial cell.

Notably, PioAB of R. palustris TIE-1 are homologs of MtrAB
of the Fe(III)-reducing bacterium Shewanella oneidensis MR-1
(MR-1; Jiao and Newman, 2007). In MR-1, MtrA is a decaheme
c-Cyt, while MtrB is a trans-outer membrane (OM), porin-like
protein. They form a tight protein complex that transfers elec-
trons across the OM to MtrC and OmcA, two OM decaheme
c-Cyts that are localized on bacterial outermost surface (Ross
et al., 2007; Shi et al., 2008; Hartshorne et al., 2009; Lower et al.,
2009; Reardon et al., 2010). MtrABC and OmcA are key compo-
nents of the MR-1 extracellular electron transfer pathway, which
also includes a tetraheme c-Cyt CymA in the inner membrane.
Together, they facilitate electron transfer from the quinone/quinol
pool in the inner membrane across the periplasm, through the
OM, to the surface of Fe(III) oxides (Richardson, 2000; Shi et al.,
2007, 2009; Fredrickson et al., 2008). In addition to mediating elec-
tron transfer to and from Fe, MtrAB homologs are also involved
in extracellular reduction of dimethylsulfoxide by MR-1 and are
hypothesized to be the prototype of a model system for electron
transfer across the bacterial OM (Gralnick et al., 2006; Hartshorne
et al., 2009).

To investigate the molecular mechanism used by ES-1 for oxi-
dizing Fe(II), we searched the ES-1 genome for the homologs of
Cyc-2/Rus/Cyc-1 of A. ferrooxidans, FoxEYZ of Rhodobacter strain
SW2 and PioAB/MtrAB. This search identified a three-gene clus-
ter that encoded MtrA, MtrB, and CymA homologs. To distinguish
them from those found in Fe(III)-reducing bacteria, we named the
identified homologs MtoAB and CymAES-1. Cloned mtoA partially
complemented an MR-1 mutant without MtrA in ferrihydrite
(FH) reduction. Recombinant MtoA was purified following over-
expression in MR-1 cells and characterized systematically. Purified
MtoA was found to be a decaheme c-Cyt and able to oxidize sol-
uble Fe(II) in vitro. Collectively, these results suggest that MtoA
is a Fe(II)-oxidizing protein that works in concert with MtoB and
CymAES-1 to mediate electron transfer reactions from the cell sur-
face to the inner membrane during extracellular Fe(II) oxidation
by ES-1.

MATERIALS AND METHODS
STANDARD PROCEDURES
Protein concentrations were measured with a bicinchoninic acid
(BCA) protein assay kit from Pierce (Rockford, IL, USA). Sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
and Western blot analysis were conducted according to the instruc-
tions from Invitrogen (Carlsbad, CA, USA). To visualize proteins
directly, gels were stained with GelCode blue stain from Pierce.
Heme staining was carried out according the protocol described
by Thomas et al. (1976). RGS-His antibody was used for detecting
the recombinant protein tagged with RGS-His epitope by Western
blot analysis (QIAGEN, Valencia, CA, USA). Kanamycin was used
at 25 μg/ml.

GENE IDENTIFICATION AND CLONING
The approach used to identify MtoAB from the ES-1 genome
was similar to those described previously (Shi et al., 1998; Shi
and Zhang, 2004). MR-1 MtrAB and PioAB of R. palustris TIE-
1 were used as templates to search for open reading frames
(ORFs) whose predicted peptide products displayed similarity to
the MtrAB/PioAB by BLAST (E < 0.01). Following their identifi-
cation, the polypeptide sequences of MtoA, MtoB, or CymAES-1

and MtrA homologs, MtrB homologs, or CymA homologs of
19 sequenced Shewanella strains described by Fredrickson et al.
(2008) and PioA or PioB were used to construct phylogenetic
trees with the neighbor-joining-based ALGNX program of Vector
NTI (Invitrogen). Likewise, the ES-1 genome was also searched
for the homologs of Cyc-2/Rus/Cyc-1 of A. ferrooxidans and Fox-
EYZ of Rhodobacter strain SW2. The ORF for the identified MtrA
homolog was synthesized and then cloned into a protein expres-
sion vector pJexpress 401 to create pLS279 by DNA 2.0 (Menlo
Park, CA, USA). pLS279 was introduced into MR-1 ΔmtrB–mtrD
(locus tags SO_1776-SO_1782) or ΔmtrA (SO_1777) mutant by
electroporation to create LS587 and LS597, respectively (Shi et al.,
2005; Hartshorne et al., 2009; Clarke et al., 2011). ΔmtrA mutant
was also transformed with pJexpress 401 to create LS620.

FERRIHYDRITE REDUCTION
For ferrihydrite (FH) reduction, MR-1, LS597, and LS620 were
grown in PIPES-buffered M1 medium with 20 mM sodium lactate
aerobically at 30˚C for 16 h with agitation (150 rpm) and har-
vested by centrifugation (5000 × g, 5 min). Harvested cells were
washed once with the same medium, purged with N2, and trans-
ferred to Balch tubes at final concentration of 1 × 108 cells/ml.
FH was added at final concentration of 10 mM. The tubes were
incubated horizontally at 30˚C with shaking (25 rpm; Shi et al.,
2011). At predetermined time points, 0.5 N HCl extractable Fe(II)
was determined by the ferrozine assay (Stookey, 1970).

PROTEIN PURIFICATION
MtoA was purified from a mutant without major MR-1 c-Cyts,
such as MtrA, MtrC, and OmcA. Compared to that in wt, yields
of purified c-Cyts from this mutant were often two to three times
higher. LS587 was grown aerobically in Tryptic Broth at 30˚C with
agitation (150 rpm) until the culture reached an optical density
at 600 nm of 0.6. Isopropyl β-d-1-thiogalactopyranoside (IPTG)
was added to a final concentration of 1 mM. The LS587 cells
were grown for another 17 h and then harvested by centrifu-
gation at 6000 × g for 15 min. The harvested cells were washed
once with buffer A (20 mM HEPES, pH 7.8, 150 mM NaCl) and
stored at −20˚C. Frozen cell pellets were resuspended in buffer
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B [buffer A + protease inhibitor (Roche Diagnostic, Indianapo-
lis, IN, USA)] in a ratio of 5 ml/g wet weight cells. The cells
were lysed by passage through a French press three times at
8000 lbf/in2. The unbroken cells and debris were removed by
centrifugation at 15,000 × g for 30 min. The supernatant was
transferred to ultracentrifugation tubes and further centrifuged
at 150,000 × g for 1 h. The supernatant was loaded onto a Ni2+–
nitrilotriacetic acid (NTA) agarose column pre-equilibrated with
buffer B. The column was washed with following buffers in
sequential order: buffer B, buffer C [buffer B + 10% (v/v) glyc-
erol], and buffer D (buffer C + 40 mM imidazole). MtoA was
eluted with buffer E (buffer C + 250 mM imidazole; Shi et al.,
2005). The fractions containing MtoA were pooled and concen-
trated. The concentrated MtoA was loaded on a HiLoad 16/60
column of Superdex 200 and eluted with buffer B by means of
an ÄKTA explorer fast protein liquid chromatography system (GE
Healthcare, Piscataway, NJ, USA). The MtoA-containing fractions
were pooled, concentrated, changed to buffer C, aliquoted, and
stored at −20˚C. All protein purification steps were performed
at 4˚C.

MALDI–TOF MASS SPECTROMETRY
MALDI–TOF mass spectra were acquired using a Bruker Ultra-
Flextreme (Billerica, MA, USA) mass spectrometer operated in
linear mode. The instrument was calibrated with Protein Stan-
dard II (Bruker). MtoA in the final dialysis buffer was either
desalted with a C4 OMIX pipette tip (Varian, Palo Alto, CA, USA)
before spotting on the MALDI target, or spotted directly. Simi-
lar results were obtained with either method. The matrix solution
was α-cyano-4-hydroxycinnamic acid in methanol. Laser power
and number of lasers shots were adjusted and scans were averaged
until the desired signal-to-noise ratio was obtained. Data from
four experiments on three different preparations of MtoA were
averaged.

LIQUID CHROMATOGRAPHY–MS
Approximately 60 μg of MtoA in a volume of 200 μl was dena-
tured by adding ∼96 mg of solid urea and incubating at room
temperature for 1 h. The sample was diluted 12-fold with 100 mM
ammonium bicarbonate buffer (pH 8) and then digested with
sequencing-grade modified trypsin (Promega, Madison,WI, USA)
overnight at 37˚C at a protein-to-enzyme ratio of 20:1.The digest
was desalted by solid phase extraction with a Supelco Discovery
C18 cartridge. The desalted sample was then analyzed by LC–
tandem mass spectrometry (MS/MS) on a custom-built LC system
coupled to an LTQ Orbitrap mass spectrometer (Thermo Fisher
Scientific, San Jose, CA, USA) as previously described (Livesay
et al., 2007). The resulting MS/MS data were searched using
TurboSequest v27.12 (Eng et al., 1994), with parent mass toler-
ance, 50 ppm; fragment mass tolerance, 0.5 Da; partially tryptic
enzyme rules; a dynamic modification on cysteine (C) residues of
615.1694 (Yang et al., 2005), corresponding to the mass of a heme
C group containing 56Fe and accounting for the charge on the
heme iron. Because heme C peptides are known to be difficult to
identify from database searches, we manually annotated tandem
mass spectra of heme C peptides assigned to each observed heme
motif.

CYCLIC VOLTAMMETRY
Cyclic voltammetry (CV) was performed inside a Faraday cage
housed in a N2-filled chamber (atmospheric O2 < 2 ppm). The
glass electrochemical cell contained three electrodes: a Ag/AgCl
(saturated KCl) reference electrode,a basal plane pyrolytic graphite
working electrode and a Pt wire counter electrode. The sam-
ple chamber was maintained at 4˚C. Immediately prior to each
experiment the working electrode surface was lightly abraded
with “Wet and Dry Abrasive Paper” of fine grade (English Abra-
sives and Chemicals, Stafford, UK) and polished with an aqueous
0.3-μm Al2O3 slurry. After sonication, the electrode was rinsed,
dried with a tissue and a few microliters of ice-cold solution
containing 100 μM MtoA in 20 mM HEPES pH 7.6 + 100 mM
NaCl + 10% (v/v) glycerol were placed on the electrode. After 30–
60 s, excess solution was removed from the electrode, which was
then immersed in the desired buffer-electrolyte: 25 mM HEPES pH
7.1 with 100 mM NaCl, or 20 mM Tris pH 7.8–9.2 with 100 mM
NaCl. Baseline subtraction was carried out as previously described
(Hartshorne et al., 2009). Midpoint potentials (Em) were deter-
mined by fitting oxidative and reductive scans to the sum of the
theoretical response for 10 centers behaving as isolated n = 1 sites
(Clarke et al., 2011). Potentials are quoted with respect to the stan-
dard hydrogen electrode (SHE) following addition of +0.197 V to
the measured values.

SPECTROSCOPIC AND STOPPED-FLOW KINETIC MEASUREMENT
All spectroscopic and kinetic measurements were conducted in
an anoxic chamber filled with N2 from a liquid N2 boil-off sup-
ply (<1 ppm O2; Innovative Technologies, Port Washington, NY,
USA). MtoA stock solution containing 4 μM protein, 150 mM
NaCl, and 20 mM HEPES buffer (pH = 7.6) was purged with dry
N2 gas for more than 1 h, then stored at 4˚C in serum bottles
capped with thick rubber stoppers and crimp sealed. All chemicals,
plastic syringes, tubes, vials, and pipette tips were deoxygenated for
at least 24 h inside the anoxic chamber prior to use. The UV–visible
absorption spectra were collected using Agilent 8452 Diode Array
Spectrophotometer (Santa Clara, CA, USA). Purified MtoA was in
the oxidized form. To record the spectrum of fully reduced MtoA,
10 mM sodium dithionite solution was gradually added to 0.5 ml
of protein stock solution until no changes in the UV–visible spec-
tra were observed. In pH-dependent Fe(II) oxidation experiments,
MtoA stock solution was diluted to 0.4 μM in Tris buffer (20 mM
buffer with 150 mM NaCl) at the desired pH value. A small volume
of FeCl2 stock solution (15 mM) was spiked into the diluted pro-
tein solution. Absorption spectra of the resulting solution mixture
were observed at ∼5 min after the spiking, allowing the reactions
to reach equilibrium.

Electron transfer in the Fe(II) oxidation by MtoA was measured
using the reaction between 39.4 μM of FeCl2 and 4 μM of purified
MtoA solution at pH 8. The amount of reduced MtoA after reac-
tion was measured using the absorbance at the 552-nm band in the
absorption spectrum. The Fe(II) concentration in the solution was
measured by ferrozine assay. To minimize the spectral interference
of MtoA, the solution was filtered by a 30-kDa centrifuge filter
(Amicon Ultra-0.5, Millipore, Billerica, MA, USA) at 13,000 × g
for 12 min, and then 0.4 ml of the filtrate into 1.6 ml ferrozine
(1000 mg/l, pH 7) was added. A control experiment was conducted
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without adding MtoA solution, and the Fe(II) concentration after
the same filtration process did not change substantially.

Ligand effects on oxidation of Fe(II)-complexes by MtoA were
investigated using a stopped-flow system with a BioLogic MOS 250
spectrometer (Knoxville, TN, USA). The method was described in
detail by Wang et al. (2008). Briefly, known volumes of MtoA
and Fe(II)-complex solutions were rapidly mixed, and then the
absorbance at 552 nm was tracked as a function of time. The con-
centration of oxidized MtoA at time t (Ct) can be calculated from
the measured absorbance (At) using the following equation (Wang
et al., 2008) after baseline correction:

Ct = At − C0 εox

εox − εred
(1)

where C0 is the initial concentration of oxidized MtoA, εox, and
εred are the molar absorption coefficients of the oxidized and
reduced MtoA, respectively. All stopped-flow kinetic experiments
were conducted in Tris buffer (pH 8) containing 0.4 μM protein
and 200 μM Fe(II) complexes. The ferrous iron-to-ligand ratio in
Fe–citrate, Fe–NTA, and Fe–EDTA stock solutions was 1:10.

ANALYSIS OF KINETIC DATA
The overall reaction between oxidized MtoA (ox-MtoA) and
Fe(II)-complexes can be expressed as:

Fe(II) − ligand + ox − MtoA → Fe(III) − ligand + re-MtoA (2)

The rate of this reaction can then be expressed as follows:

dC

dt
= −kCA(1 − Q/K ) (3)

where k is the rate constant, A and C are the Fe(II) and oxidized
MtoA concentrations, respectively. Q is the ion activity product of
the redox reaction, and K is the equilibrium constant. The concen-
tration of oxidized MtoA (C) was calculated from the measured
absorbance in the stopped-flow system and plotted against time.
The residual Fe(II) concentration was calculated from the elec-
tron balance between the reacted Fe(II) and reduced MtoA. The
calculated MtoA and Fe(II) concentrations as a function of time
were then used to estimate rate parameters in Eq. 3. The second-
order rate constant (k) and the equilibrium constant (K ) were
determined by the slope and the ending point of the fitted line,
respectively.

RESULTS
IDENTIFICATION OF MtoAB AND CymAES-1

Search of the ES-1 genome did not reveal any homologs for
Cyc-2/Rus/Cyc-1 of A. ferrooxidans or FoxEYZ of Rhodobac-
ter strain SW2, but identified a gene cluster that encoded an
MtrA/PioA homolog (Slit_2497) and an MtrB/PioB homolog
(Slit_2496). Analysis of the genes adjacent to the mtrAB homologs
also identified a cymA homolog (Slit_2495) that was next to
an mtrB homolog. To distinguish them from those found in
MR-1 and PioAB of R. palustris TIE-1, we named these genes
and their encoding proteins mtoAB–cymA and MtoAB/CymAES-1,
respectively (Figure 1). No pioC homolog was found in the

FIGURE 1 | Genetic organization of mtoA, mtoB, and cymA of

Sideroxydans lithotrophicus ES-1. Shown are the relative positions of
mtoA, mtoB, and cymA within the complete nucleotide sequence of S.
lithotrophicus ES-1. The genes are labeled by arrows whose sizes and
orientations indicate their relative lengths and directions in which they are
presumed to be transcribed. For comparison, mtrCAB of Shewanella
oneidensis MR-1 and pioABC of Rhodopseudomonas palustris TIE-1 are
included. The genes encoding c-type cytochromes are labeled in red, while
those encoding the β-barrel outer membrane proteins are labeled in green.

ES-1 genome. The deduced MtoA polypeptide contains 317
amino acids with calculated molecular mass of 33556.2 Da. Ten
CXXCH motifs (i.e., putative heme-binding sites) were found
within the MtoA polypeptide, suggesting that matured MtoA
contains up to 10 heme co-factors. In addition to the 10 his-
tidine residues of the CX2CH motifs, the MtoA polypeptide
contained 14 more histidine residues, most of which were prob-
ably used as the distal ligands for the heme Fe. Phylogenetic
analysis of the deduced amino acid sequence of MtoA with the
MtrA homologs of 19 sequenced Shewanella strains (Fredrick-
son et al., 2008) and PioA of R. palustris TIE-1 demonstrated
that MtoA was 39% identical to PioA and 42–44% identical
to the MtrA sequences analyzed. Furthermore, similar to She-
wanella MtrA, MtoA lacked the N-terminal extension (∼200
amino acids) that was found in PioA polypeptides (Jiao and
Newman, 2007). These results show that MtoA is almost equally
related to PioA used for Fe(II) oxidation and MtrA for Fe(III)
reduction, and the N-terminal extension of PioA is probably used
for specific interaction with PioBC, but not directly for Fe(II)
oxidation.

Likewise, MtoB was 17% identical to PioB and 19–21% iden-
tical to the MtrB sequences analyzed, while CymAES-1 was 56%
identical to CymA of S. baltica OS223, 34% to MR-1 CymA
and 32–36% identical to the other CymA sequences included
in the alignment. Like PioB, MtoB is ∼110 amino acids longer
than the MtrBs of Shewanella. Given that in MR-1, MtrAB,
and CymA are the key components of the electron transfer
pathway used for extracellular reduction of Fe(III) (Richard-
son, 2000; Shi et al., 2007, 2009), identification of an mtoAB–
cymA cluster suggests that MtoAB and CymAES-1 may form
a pathway for transferring electrons from the bacterial surface
to the inner membrane during extracellular Fe(II) oxidation
by ES-1.

COMPLEMENTATION OF MR-1 mtr A DELETION MUTANT IN
FERRIHYDRITE (FH) REDUCTION BY MtoA
MtoA is a homolog of MR-1 MtrA that plays a critical role in
FH reduction because deletion of mtrA impaired MR-1’s ability
to reduce FH (Hartshorne et al., 2009). To determine whether
MtoA can facilitate trans-membrane electron transfer, pLS279
with mtoA was introduced into an MR-1 ΔmtrA mutant and
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tested for FH reduction. The same mutant was also transformed
with an empty vector, and the resulting strain was used as a neg-
ative control. Under the conditions tested, the MR-1 wt began
to reduce FH within 24 h, while no FH reduction was detected
in the reactions mediated by ΔmtrA mutants with either empty
vector or mtoA at 48 h. After 120 h, FH reduction was detected
in the reactions mediated by ΔmtrA mutant with either empty
vector or mtoA, but no major difference was found between
them. After 240 h, wt produced 3.82 ± 0.14 mM Fe(II) (n = 3),
while mutants with empty vector or MtoA produced 1.56 ± 0.3
and 3.26 ± 0.42 mM Fe(II) (n = 3), respectively, which were 40
and 85% of that produced by wt (Figure 2). Thus, recombinant
MtoA partially complements ΔmtrA mutant in FH reduction,
demonstrating that it can be inserted into MtrB and transfer elec-
tron across the outer membrane to MtrC during FH reduction.
Because deletion of mtrA up-regulates mtrD, an mtrA homolog
(Coursolle and Gralnick, 2010), the up-regulated MtrD may con-
tribute to the FH reduction observed in the mutant with empty
vector.

PURIFICATION OF RECOMBINANT MtoA
Following cell lysis and ultracentrifugation, recombinant MtoA
was isolated from the soluble fraction by immobilized metal ion
affinity chromatography followed by gel-filtration chromatogra-
phy. The purified MtoA migrated as two bands on SDS-PAGE
with apparent masses of ∼43 and 86 kDa, respectively. Heme
staining and Western blot analyses of the same sample showed
that both bands were the heme-containing MtoA, indicating that
band with ∼86 kDa contained MtoA dimers (Figure 3). Mea-
surement of purified MtoA with MALDI–TOF MS revealed that
its molecular mass was 42,746 ± 114 Da (n = 3), which was very
close to 42,639 Da, the calculated molecular mass for recombi-
nant MtoA matured with 10 heme groups. In addition, liquid

FIGURE 2 | Complementation of Shewanella oneidensis MR-1 mutant

without MtrA by MtoA. Fe(II) formation after reduction of 10 mM FH by S.
oneidensis MR-1 wild type (wt), ΔmtrA mutant with empty vector, and the
mutant complemented with MtoA (Compl.) for 240 h. The values reported
are the means and SD of triplicate measurements.

chromatography–mass spectrometry (LC–MS)/MS experiments
following tryptic digest demonstrated heme modification at 8 out
of 10 CXXCH heme-binding motifs in MtoA (all but motifs 9 and
10). Presumably, peptides from motifs 9 and 10 are not observed
because of a lack of trypsin cleavage sites in their vicinity. Both
motifs 9 and 10 would be in the same 56-residue, 6891-Da tryp-
tic peptide, too large to be readily analyzed by LC–MS (data not
shown). All these results clearly demonstrate that purified MtoA
is a decaheme c-Cyt.

CYCLIC VOLTAMMETRY OF PURIFIED MtoA
Cyclic voltammetry of basal plane graphite electrodes exposed to
solutions of MtoA displayed clear peaks describing oxidative and
reductive transformations that were not seen in the absence of
MtoA (Figure 4). The oxidative and reductive peak areas were
within error of each other consistent with reversible redox trans-
formation of the adsorbed protein, and typically corresponded
to 3 × 10−12 pmol of electroactive MtoA per square centimeter
assuming all 10 hemes are redox active. This electroactive popu-
lation is consistent with monolayer coverage of the electrode by
MtoA, and peak currents were found to be directly proportional to
the scan rate confirming that the response did indeed arise from
an adsorbed protein film. As shown in Figure 4, MtoA is redox
active over a more positive window of potential than MR-1 MtrA
at pH 7.1, suggesting that MtoA is better poised to oxidize Fe(II)
than MR-1 MtrA.

The redox properties of MtoA were measured by CV at pH
7.1, 7.8, 8.2, and 9.2. For each pH the protein was redox active

FIGURE 3 | Purification of MtoA. A total of 2 μg of isolated MtoA was run
by SDS-PAGE and then visualized by GelCode staining (lane A) and heme
staining (lane B) or probed with RGS-His-HRP antibody (lane C). Migration
positions of protein standards with different molecular masses (kDa) are
indicated at the left.
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FIGURE 4 | Cyclic voltammograms of MtoA of Sideroxydans

lithotrophicus ES-1 and MtrA of Shewanella oneidensis MR-1

adsorbed on graphite electrodes. Scan rate = 50 mV/s,
buffer-electrolyte = 25 mM HEPES pH 7.1 with 100 mM NaCl, T = 277 K.

FIGURE 5 | Average E m values determined from cyclic voltammetry of

MtoA at the indicated pH.

between ∼+100 and −400 mV (vs. SHE) with the heme Em

values clustering to define a low potential peak and a higher
potential shoulder. The major impact of increased pH was to pro-
duce a greater proportion of hemes with lower Em. A smaller
effect was a shift of the higher potential end of redox active
window to more negative values. These effects were quantified
by assuming that the oxidative and reductive peaks arose from
the sum of contributions from 10 independent centers display-
ing reversible, n = 1 electron transfer. This assumption yielded a
good fit to the data and averaging the Em values from oxidative
and reductive peaks yielded 10 apparent Em values for each pH
(Figure 5).

FIGURE 6 | Absorption spectra of MtoA (4 μM) in 50 mM NaCl and

100 mM HEPES buffer (pH = 7) in the oxidized (blue line) and the

reduced form (red line).

Fe(II) OXIDATION BY MtoA
The absorption spectrum of purified, oxidized MtoA exhibited a
characteristic peak at 408 nm (α peak) with a shoulder at ∼352 nm
and a weak absorption band at ∼530 nm. After addition of sodium
dithionite solution at pH 7, α peak shifted to 418 nm, and the
shoulder shifted to 324 nm to form a distinct peak. In addition,
two absorption peaks at 522 nm (β peak) and 552 nm (γ peak)
appeared (Figure 6). A similar change was observed in absorp-
tion spectra of oxidized and reduced MtrC and OmcA (Wang
et al., 2008). The fully reduced MtoA could be rapidly re-oxidized
by addition of 1 mM of Fe(III)–NTA solution (data not shown),
which is consistent with previous results that MR-1 MtrA is a
bidirectional protein and can mediate electrons in and out of MR-
1 cells as well as proteoliposomes (Hartshorne et al., 2009; Ross
et al., 2011). To investigate the mass balance in FeCl2 oxidation
by MtoA, the concentration changes of Fe(II) ions (Δ[Fe(II)])
and reduced MtoA ([MtoA]red) were investigated with 4 μM of
oxidized MtoA reacted with ∼40 μM of FeCl2 at pH 9. At the
end of the reaction, the ratio of Δ[Fe(II)] to [MtoA]red was
9.6 ± 1.5 (n = 3). Changing the initial concentration of MtoA
to 2.3 and 3 μM, respectively, did not significantly change the
ratio. Although not all MtoA was reduced by FeCl2 in all exper-
iments, the amount of Fe(II) ions formed was close to 10 times
more than the amount of MtoA reduced. It suggests that, under
this condition, 10 hemes in MtoA participated in electron trans-
fer, and no other electron acceptor or donor participated in this
reaction.

pH-DEPENDENT Fe(II) OXIDATION BY MtoA
Absorption spectra of 0.4 μM MtoA after reaction with 18 μM
FeCl2 at pH 7, 7.5, 8, 8.5, and 9, respectively, were compared
(Figure 7). The comparison showed that, with the same amount of
FeCl2, the absorbance at 552 nm increased as pH increased. At pH
7, only 1.0 ± 1.1% (n = 3) of MtoA was reduced by 18 μM FeCl2,
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FIGURE 7 | (A) Absorption spectra of MtoA (0.4 μM) after the oxidation of
18 μM FeCl2 at pH 7 (black), pH 7.5 (blue), pH 8 (red), pH 8.5 (pink), and pH
9 (green). (B) Speciation of Fe(II; 18 μM) as a function of pH in 150 mM
NaCl solution (Allison et al., 1991). (C) Variation of Fe(II; blue columns)
oxidized by MtoA at the end of reactions and initial [Fe(OH)+] (red columns)
as a function of pH.

but this percentage increased to 4.9 ± 0.3% (n = 3) at pH 7.5,
14.7 ± 3.3% (n = 3) at pH 8, 48.2 ± 1.7% (n = 3) at pH 8.5, and
63.0 ± 9.8% (n = 3) at pH 9. The maximum fraction of total MtoA
reduced by FeCl2 was therefore systematically larger at higher pH.

The same trend was also observed in HEPES buffer at pH 7 and
8 (data not shown). It should be noted that in all of these exper-
iments, MtoA was not totally reduced, even though there was an
excess of electron donor, FeCl2. At pH 9, increasing the concen-
tration of FeCl2 up to 400 μM did result in increasingly reduced
MtoA. At pH 8, no additional MtoA was reduced as [FeCl2] was
increased to 840 μM. Thus, MtoA has the ability to oxidize FeCl2
in the pH range of 7–9, but reduction of MtoA is incomplete
even in the presence of excess FeCl2. Similar incomplete redox
reaction was observed in the oxidation of reduced MtrF by flavin
mononucleotide (FMN). For that system it was proposed that only
a subgroup of the 10 hemes in each MtrF molecule participated
in FMN reduction based on reduction potential difference esti-
mated between individual hemes and the midpoint potential of
FMN/FMNH2 (Clarke et al., 2011). However, the mass balance
experiment in this study showed that the molar ratio of the con-
sumed Fe(II) to reduced MtoA was close to 10:1, consistent in
principle with participation of 10 hemes in each MtoA molecule
per 10 Fe(II) oxidized. If only a subgroup of MtoA hemes reacted
with FeCl2, this ratio should be <10.This suggests that at the end
of reaction a subpopulation of MtoA molecules are fully reduced,
and incomplete reduction of MtoA is accounted for by a fully
oxidized subgroup of MtoA. Hence, in contrast to MtrF, MtoA
appears to undergo redox reactions via a cascade whereby once
electron transfer into an MtoA molecule begins, it subsequently
becomes more energetically favorable to continue reduction of
that molecule to completion. This suggests that for any individual
MtoA, redox potentials for individual hemes, in CV measurements
for example, progressively shift to more oxidizing potentials as
reduction proceeds, and vice versa. As Fe(II), Fe(III), and oxi-
dized MtoA concentrations change during the course of reaction,
the redox potential difference between ferrous species and MtoA
may decrease to zero, at which point the reaction reaches equilib-
rium. Involvement of all of its 10 hemes during Fe(II) oxidation
implies the ability of MtoA for transferring electrons from extra-
cellular Fe(II), across the outer membrane, and into the periplasm,
which is consistent with the complementation results described
above.

LIGAND-DEPENDENT Fe(II) OXIDATION BY MtoA
Rates of Fe(II)-complex oxidation by MtoA at pH 8 were investi-
gated using a stopped-flow system. In all experiments, the molar
ratio of Fe(II) to MtoA was 500. The change of MtoA concentra-
tion with time was calculated according to the absorbance change
at the γ peak. A control experiment was included by mixing MtoA
and Tris buffer (pH 8) in which no significant change was observed
in the concentration of oxidized MtoA during the time course of
study (Figure 8). In all Fe(II)-complex oxidation reactions, the
concentration of oxidized MtoA changed in a similar way. It ini-
tially decreased very fast, and then the rate of change decreased
to reach redox equilibrium. All reactions reached equilibrium
within 2 min. The fraction of MtoA reduced by Fe(II)-complexes
at the end of each reaction was in the order Fe(II)Cl2 > Fe(II)–
citrate > Fe(II)–NTA > Fe(II)–EDTA (Figure 8).

The stopped-flow kinetic data were fitted to a second-order rate
model using Eq. 3. The rate constant, k, was derived from the slope
of fitted curves in the fast stage, and the equilibrium constant,

www.frontiersin.org February 2012 | Volume 3 | Article 37 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Microbiological_Chemistry/archive


Liu et al. Identification and characterization of MtoA

K, was determined from the equilibrium stage (Table 1). Rate
and equilibrium constants were significantly affected by ligand
type. The order for the oxidation rates are similar to the final
oxidation fraction, which was Fe(II)Cl2 > Fe(II)–citrate > Fe(II)–
NTA > Fe(II)–EDTA. These experiments showed that the type
of ligand significantly affected the oxidation kinetics of Fe(II)-
complexes by MtoA. Compared to the reduction rates of the
analogous Fe(III)-complexes by MtrC and OmcA, which ranged
from 0.872 μM−1 s−1 for the reaction between MtrC and Fe(III)–
EDTA to 0.012 μM−1 s−1 for the reaction between OmcA and
the Fe(III)–citrate (Wang et al., 2008), the oxidation rates of
Fe(II)-complexes by MtoA were two orders of magnitude slower.
Moreover, in the Fe(III)-complex reduction reactions by MtrC and
OmcA, there was enough free energy driving the redox reaction
to consume all heme groups. However, consistent with the discus-
sion above regarding reaction incompleteness, the free energy in
the present system was not sufficient for all MtoA to participate in
the redox reaction.

FIGURE 8 | Stopped-flow spectrophotometry results of the oxidation

of 0.2 mM Fe(II)-complexes by 0.4 μM MtoA at pH 8 [black dots; from

the top to the bottom is MtoA solution without Fe(II)-complexes

(control), Fe(II)–EDTA, Fe(II)–NTA, Fe(II)–citrate, and Fe(II)Cl2]. The fitted
curves for the kinetic data of MtoA reduction with Fe(II)Cl2 (purple),
Fe(II)–citrate (green), Fe(II)–NTA (blue), and Fe(II)–EDTA (red).

DISCUSSION
The increased oxidation of Fe(II)Cl2 by MtoA from pH 7 to pH 9
may be attributed mainly to the expected increased concentration
of hydroxylated species of Fe(II), such as Fe(OH)+ and Fe(OH)2.
Equilibrium speciation calculations based on Minteqa2 thermody-
namic database (Allison et al., 1991) as plotted in Figure 7B show
the speciation of Fe(II; 18 μM) in 150 mM NaCl solution as a func-
tion of pH. Hexaquo ferrous ion is the dominant species in the pH
range used in this study, but the amount of Fe(OH)+ increases
with increasing pH, especially when pH is greater than 7.5. Both
thermodynamic calculations and experimental data indicate that
hydroxylated species of Fe(II) have higher reactivity relative to
hexaquo Fe(II) (e.g., Wehrli, 1990; Sedlak and Chan, 1997). OH−
ligands in the inner coordination shell of Fe(II) increase its reduc-
ing potential and increase its oxidation rate, and therefore could
increase reaction to product Fe(III) phases. The concentration
change of Fe(II), including hexaquo Fe(II) and Fe(OH)+, at the
end of pH-dependent experiments was compared to the initial
Fe(OH)+ concentration (Figure 7C). It shows that the amount of
Fe(II) oxidized by MtoA appears to correlate positively with the
initial concentration of Fe(OH)+ from pH 7 to pH 9. Notably,
at pH 9, the initial concentration of Fe(OH)+ is expected to
be significantly higher than that at pH 8.5, but the amount of
Fe(II) oxidized by MtoA only increases slightly. This discrepancy
is caused, at least in part, by the fact that the average redox potential
of MtoA decreases as pH increases. This decrease is particularly
accelerated from pH 8.2 to pH 9.2. The decrease of the redox
potential of MtoA from pH 8.2 to pH 9.2 could negatively offset the
increase of Fe(OH)+ concentration in the same pH range, which
may have the net result of only a slight increase of the Fe(II) oxi-
dized by MtoA at pH 9. These results imply that change of pH in the
environments may also have significant influence on Fe(II) speci-
ation, which in turn will strongly affect microorganism-mediated
Fe(II) oxidation in their natural settings.

Ligand types impact both reaction rates and equilibrium con-
stants of redox reactions between Fe(II)-complexes and MtoA.
The equilibrium speciation calculations showed that the domi-
nant Fe(II) species in the four ligand systems is hexaquo Fe(II),
Fe(II)–citrate−, FeOH–NTA−, and Fe–EDTA−, respectively, at a
ferrous ion-to-ligand ratio of 1:10. The equilibrium constant for
the half electron transfer reactions between Fe(II)–ligand and
Fe(III)–ligand (Table 2) was calculated using the thermodynamic
cycle that involves ligand detachment from Fe(II)–ligand complex,

Table 1 | Kinetic parameters for Fe-complexes oxidation by MtoA at pH 8.

Complex Rate constants (k, μm−1 s−1) Equilibrium constant (K ) Log K ob
a Log K calc

b

FeCl2 (6.3 ± 0.3) × 10−3 (6.5 ± 0.4) × 10−3 −2.22 7.04c

Fe–citrate (4.1 ± 0.8) × 10−3 (2.4 ± 0.4) × 10−3 −2.66 −5.46d

Fe–NTA (2.5 ± 0.3) × 10−3 (8.3 ± 1.5) × 10−5 −4.125 −0.82

Fe–EDTA (1.0 ± 0.3) × 10−3 (2.1 ± 1.5) × 10−5 −4.959 −1.35

aLog Kob was calculated from the K values estimated from the fitted curve.
bLog Kcalc was calculated from theoretical Log K using experimental condition.
cCalculated assuming in equilibrium with ferrihydrite.
dCalculated by using thermodynamic data of Fe(III)citrate in Minteqa database.
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Table 2 | Relevant speciation reactions for calculating reaction-free

energy at 25˚C.

Reaction Log K (I = 0) Reference

Fe(III) + e− → Fe(II) 13.00 Martell and Smith

(1995)

Fe(III)–3H+ + 3H2O = Fe(OH)3 −3.96 Cornell and Schw-

ertmann (2003)

Fe(II) + citrate3− → Fe(II)–

citrate−
5.89 Martell and Smith

(1995)

Fe(III) + citrate3− → Fe(III)–citrate 13.43 Allison et al. (1991),

Timberlake (1964)

Fe(III)OH–NTA− + e− →
Fe(II)OH–NTA2−

0.82 Wang et al. (2008)

Fe(III)–EDTA− + e− → Fe(II)–

EDTA2−
1.35 Wang et al. (2008)

I, ionic strength.

Fe(II) oxidation to Fe(III) and Fe(III)–ligand complexation:

Fe(II)–ligand − e− → Fe(III)–ligand
↓ ↑

− ligand + ligand
↓ ↑

Fe(II) − e− → Fe(III)

(4)

Reaction equilibrium constants in this electron transfer path-
way are provided in Table 2. For the case of FeCl2 at pH 8, it is
reasonable to assume that the concentration of produced Fe(III)
was controlled by the solubility of FH [Fe(OH)3] because organic
ligand was not provided. The equilibrium constant for electron
transfer from Fe(II) to FH (log K = 7.04; Table 1) was then cal-
culated by combining the redox reaction of Fe(II)/Fe(III) and the
formation reaction of FH (Table 2). The trend of calculated log K
is consistent with that of the log K values fitted from the experi-
mental data except for the Fe–citrate case (Table 1). The exception
is likely because of incomplete understanding of the speciation
in the Fe(III)–citrate system; two Fe(III)–citrate speciation mod-
els were assembled previously based on literature data (Liu et al.,
2001) that involve completely different Fe(III) speciation. In this
study, we used the speciation model 1 in Liu et al. (2001), which
is also used in the Minteqa2 database (Allison et al., 1991). In this
model, the log K for the equation:

Fe(III) + citrate3− → Fe(III) − citrate (5)

is 13.43 Speciation calculations in our Fe(III)–citrate system
using Eq. 5, however, suggested that Fe(III)–citrate is not a stable
species if Fe(III) is allowed to precipitate as FH. The alternative
Fe(III)–citrate speciation model produced the same result. If the
FH is used as the end product, then the overall reaction constant
(log K ) from Fe(II)–citrate to FH at pH 8 is 1.15. With this value,
the trend of the calculated equilibrium reaction constants was
consistent with the value estimated from the experimental data.

FIGURE 9 | Linear free-energy relationship in Fe(II)-complexes

oxidation by MtoA.

The estimated reaction rate constants (k) and equilibrium
constants (K ) were positively correlated, establishing a linear free-
energy relationship for this system (Figure 9). This result implies
that it is the reaction-free energy that mainly determined the
observed initial reaction rates when it was far away from equi-
librium. It is interesting to note that the rate constant order
of Fe(II)-complex oxidation, Fe–citrate > Fe–NTA > Fe–EDTA, is
the inverse order observed in the reduction of Fe(III) complexes
by MtrC and OmcA, where the Fe(III)–ligand reduction rate
was Fe(III)–EDTA > Fe(III)–NTA > Fe(III)–citrate (Wang et al.,
2008). This is expected from the trend of the activation-free ener-
gies for the redox reactions between Fe-complex and proteins
(Wang et al., 2008). It is also expected from the relationship of
K = k f/kb, where k f and kb are the forward [Fe(II) oxidation]
and backward [Fe(III) reduction] reaction rate constants, respec-
tively, and K is the equilibrium constant. Using the estimated K
and k, which is k f here (Table 1), the calculated kb = k f/K, is on
the order of Fe–citrate < Fe–NTA < Fe–EDTA, which is consistent
with those observed by Wang et al. (2008). These two studies there-
fore demonstrate the same effect of ligand complexation on the
reaction rates for both reduction and oxidation reactions, indicat-
ing that complexing ligands will have a significant impact on the
reaction rates of microorganism-mediated Fe(II) oxidation in the
environments.

In MR-1, MtrAB form a tight protein complex on the OM where
MtrB is proposed to serve as a sheath for embedding MtrA and
MtrA mediates electron conductance across the OM, while CymA
is located in the inner membrane where it recycles quinol back to
quinone during extracellular Fe(III) oxide reduction (Hartshorne
et al., 2009). In this study, we showed that MtoA was a functional
Fe(II)-oxidizing protein with broad redox potential that was more
positive than that of MR-1 MtrA, indicating that, like MR-1 MtrA,
MtoA is also capable of mediating electron conductance across the
OM, but with the direction opposite to that of MR-1 MtrA during
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metal-reducing conditions. In addition, ES-1 mtoAB–cymA is, to
the best of our knowledge, the first example that the genes encod-
ing MtrAB and CymA homologs are clustered together, which
suggests that they may belong to the same operon and that their
protein products may work together for mediating electron trans-
fer reactions. Based on previous observations and the results from
this study, we propose that, similar to MtrAB and CymA in MR-1
cells, MtoAB and CymAES-1 are also located in the OM and inner
membrane, respectively, where MtoA is embedded inside MtoB.
However, the direction of MtoAB/CymAES-1-mediated electron
transfer during Fe(II) oxidation (i.e., outside-in) by ES-1 is oppo-
site to that of MtrABC/CymA-mediated reactions during Fe(III)
reduction (i.e., inside-out) by MR-1. We propose that through its
heme group(s) exposed to the extracellular environment, MtoA
oxidizes Fe(II) directly and then transfers the released electrons
across the OM to periplasmic proteins that have yet to be iden-
tified, which in turn relay the electrons to CymAES-1. CymAES-1

uses the received electrons to reduce quinone to quinol in the inner
membrane (Figure 10). Quinol then shuttles the electrons to the
redox proteins in the inner membrane for reducing O2 and/or
NAD+.

PioABC homologs are also found in the Fe(II)-oxidizing
bacterium Gallionella capsiferriformans (Bonnefoy and Holmes,
2011), indicating the broad involvements of MtoAB/PioAB
homologs in microbial Fe(II) oxidation. It should be noted that a
group of proteins that show no homologous to MtoAB/CymAES-1
have recently been proposed to be involved in Fe(II) oxidation by
the bacterium Mariprofundus ferrooxydans PV-1 and homologs of
these proteins are also present in ES-1 (Singer et al., 2011). These
results emphasize the uncertainty that remains regarding the elec-
tron transfer pathway(s) utilized by ES-1 for Fe(II) oxidation and
the need for additional research.

In summary, an mtoAB–cymA gene cluster is found in
the genome of the Fe(II)-oxidizing bacterium S. lithotrophi-
cus ES-1. Protein purification and characterization results con-
firm that MtoA is a decaheme c-type cytochrome and oxi-
dizes soluble Fe(II). MtoA-mediated Fe(II) oxidation is pH- and

FIGURE 10 |The proposed roles of MtoAB and CymAES-1 in

Sideroxydans lithotrophicus ES-1-mediated extracellular Fe(II)

oxidation. Decaheme c-Cyt MtoA, which is inserted into the porin-like,
outer membrane (OM) protein MtoB, oxidizes Fe(II) directly on the bacterial
surface and transfers the released electrons across the OM to the
periplasmic proteins that have yet to be identified. The periplasmic proteins
relay the electrons through the periplasm (PS) to the tetraheme c-Cyt
CymAES-1. CymAES-1, a homolog of NapC/NrfH family of quinol
dehydrogenase that is located in the cytoplasmic or inner membrane (IM),
reduces quinone to quinol. c-Cyts are labeled in red and direction of
electron transfer is indicated by a yellow arrow.

Fe(II)-complexing ligand-dependent. It is proposed that, together,
MtoAB and CymAES-1 form a pathway for electron conductance
from extracellular Fe(II) to the quinone pool in the bacterial inner
membrane.
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