16 research outputs found

    Munc13-1 is a Ca2+-phospholipid-dependent vesicle priming hub that shapes synaptic short-term plasticity and enables sustained neurotransmission

    Full text link
    During ongoing presynaptic action potential (AP) firing, transmitter release is limited by the availability of release-ready synaptic vesicles (SVs). The rate of SV recruitment (SVR) to release sites is strongly upregulated at high AP frequencies to balance SV consumption. We show that Munc13-1-an essential SV priming protein-regulates SVR via a Ca2+-phospholipid-dependent mechanism. Using knockin mouse lines with point mutations in the Ca2+-phospholipid-binding C2B domain of Munc13-1, we demonstrate that abolishing Ca2+-phospholipid binding increases synaptic depression, slows recovery of synaptic strength after SV pool depletion, and reduces temporal fidelity of synaptic transmission, while increased Ca2+-phospholipid binding has the opposite effects. Thus, Ca2+-phospholipid binding to the Munc13-1-C2B domain accelerates SVR, reduces short-term synaptic depression, and increases the endurance and temporal fidelity of neurotransmission, demonstrating that Munc13-1 is a core vesicle priming hub that adjusts SV re-supply to demand

    Modular architecture of Munc13/calmodulin complexes: dual regulation by Ca2+ and possible function in short-term synaptic plasticity

    No full text
    Ca2+ signalling in neurons through calmodulin (CaM) has a prominent function in regulating synaptic vesicle trafficking, transport, and fusion. Importantly, Ca2+–CaM binds a conserved region in the priming proteins Munc13-1 and ubMunc13-2 and thus regulates synaptic neurotransmitter release in neurons in response to residual Ca2+ signals. We solved the structure of Ca2+4–CaM in complex with the CaM-binding domain of Munc13-1, which features a novel 1-5-8-26 CaM-binding motif with two separated mobile structural modules, each involving a CaM domain. Photoaffinity labelling data reveal the same modular architecture in the complex with the ubMunc13-2 isoform. The N-module can be dissociated with EGTA to form the half-loaded Munc13/Ca2+2–CaM complex. The Ca2+ regulation of these Munc13 isoforms can therefore be explained by the modular nature of the Munc13/Ca2+–CaM interactions, where the C-module provides a high-affinity interaction activated at nanomolar [Ca2+]i, whereas the N-module acts as a sensor at micromolar [Ca2+]i. This Ca2+/CaM-binding mode of Munc13 likely constitutes a key molecular correlate of the characteristic Ca2+-dependent modulation of short-term synaptic plasticity

    Miniaturization of Scorpion β-Toxins Uncovers a Putative Ancestral Surface of Interaction with Voltage-gated Sodium Channels*♦

    No full text
    The bioactive surface of scorpion β-toxins that interact with receptor site-4 at voltage-gated sodium channels is constituted of residues of the conserved βαββ core and the C-tail. In an attempt to evaluate the extent by which residues of the toxin core contribute to bioactivity, the anti-insect and anti-mammalian β-toxins Bj-xtrIT and Css4 were truncated at their N and C termini, resulting in miniature peptides composed essentially of the core secondary structure motives. The truncated β-toxins (ΔΔBj-xtrIT and ΔΔCss4) were non-toxic and did not compete with the parental toxins on binding at receptor site-4. Surprisingly, ΔΔBj-xtrIT and ΔΔCss4 were capable of modulating in an allosteric manner the binding and effects of site-3 scorpion α-toxins in a way reminiscent of that of brevetoxins, which bind at receptor site-5. While reducing the binding and effect of the scorpion α-toxin Lqh2 at mammalian sodium channels, they enhanced the binding and effect of LqhαIT at insect sodium channels. Co-application of ΔΔBj-xtrIT or ΔΔCss4 with brevetoxin abolished the brevetoxin effect, although they did not compete in binding. These results denote a novel surface at ΔΔBj-xtrIT and ΔΔCss4 capable of interaction with sodium channels at a site other than sites 3, 4, or 5, which prior to the truncation was masked by the bioactive surface that interacts with receptor site-4. The disclosure of this hidden surface at both β-toxins may be viewed as an exercise in “reverse evolution,” providing a clue as to their evolution from a smaller ancestor of similar scaffold

    Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder

    No full text
    Munc13 proteins are essential regulators of neurotransmitter release at nerve cell synapses. They mediate the priming step that renders synaptic vesicles fusion-competent, and their genetic elimination causes a complete block of synaptic transmission. Here we have described a patient displaying a disorder characterized by a dyskinetic movement disorder, developmental delay, and autism. Using whole-exome sequencing, we have shown that this condition is associated with a rare, de novo Pro814Leu variant in the major human Munc13 paralog UNC13A (also known as Munc13-1). Electrophysiological studies in murine neuronal cultures and functional analyses in Caenorhabditis elegans revealed that the UNC13A variant causes a distinct dominant gain of function that is characterized by increased fusion propensity of synaptic vesicles, which leads to increased initial synaptic vesicle release probability and abnormal short-term synaptic plasticity. Our study underscores the critical importance of fine-tuned presynaptic control in normal brain function. Further, it adds the neuronal Munc13 proteins and the synaptic vesicle priming process that they control to the known etiological mechanisms of psychiatric and neurological synaptopathies

    Transcriptional diversity in specific synaptic gene sets discriminates cortical neuronal identity

    No full text
    Synapse diversity has been described from different perspectives, ranging from the specific neurotransmitters released, to their diverse biophysical properties and proteome profiles. However, synapse diversity at the transcriptional level has not been systematically identified across all synapse populations in the brain. To quantify and identify specific synaptic features of neuronal cell types we combined the SynGO (Synaptic Gene Ontology) database with single-cell RNA sequencing data of the mouse neocortex. We show that cell types can be discriminated by synaptic genes alone with the same power as all genes. The cell type discriminatory power is not equally distributed across synaptic genes as we could identify functional categories and synaptic compartments with greater cell type specific expression. Synaptic genes, and specific SynGO categories, belonged to three different types of gene modules: gradient expression over all cell types, gradient expression in selected cell types and cell class- or type-specific profiles. This data provides a deeper understanding of synapse diversity in the neocortex and identifies potential markers to selectively identify synapses from specific neuronal populations. © 2023, The Author(s).11Nsciescopu
    corecore