5,521 research outputs found

    Combining M-FISH and Quantum Dot technology for fast chromosomal assignment of transgenic insertions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physical mapping of transgenic insertions by Fluorescence in situ Hybridization (FISH) is a reliable and cost-effective technique. Chromosomal assignment is commonly achieved either by concurrent G-banding or by a multi-color FISH approach consisting of iteratively co-hybridizing the transgenic sequence of interest with one or more chromosome-specific probes at a time, until the location of the transgenic insertion is identified.</p> <p>Results</p> <p>Here we report a technical development for fast chromosomal assignment of transgenic insertions at the single cell level in mouse and rat models. This comprises a simplified 'single denaturation mixed hybridization' procedure that combines multi-color karyotyping by Multiplex FISH (M-FISH), for simultaneous and unambiguous identification of all chromosomes at once, and the use of a Quantum Dot (QD) conjugate for the transgene detection.</p> <p>Conclusions</p> <p>Although the exploitation of the unique optical properties of QD nanocrystals, such as photo-stability and brightness, to improve FISH performance generally has been previously investigated, to our knowledge this is the first report of a purpose-designed molecular cytogenetic protocol in which the combined use of QDs and standard organic fluorophores is specifically tailored to assist gene transfer technology.</p

    Magnetic translation groups in an n-dimensional torus

    Get PDF
    A charged particle in a uniform magnetic field in a two-dimensional torus has a discrete noncommutative translation symmetry instead of a continuous commutative translation symmetry. We study topology and symmetry of a particle in a magnetic field in a torus of arbitrary dimensions. The magnetic translation group (MTG) is defined as a group of translations that leave the gauge field invariant. We show that the MTG on an n-dimensional torus is isomorphic to a central extension of a cyclic group Z_{nu_1} x ... x Z_{nu_{2l}} x T^m by U(1) with 2l+m=n. We construct and classify irreducible unitary representations of the MTG on a three-torus and apply the representation theory to three examples. We shortly describe a representation theory for a general n-torus. The MTG on an n-torus can be regarded as a generalization of the so-called noncommutative torus.Comment: 29 pages, LaTeX2e, title changed, re-organized, to be published in Journal of Mathematical Physic

    Characteristics of survivors: growth and nutritional condition of early stages of the hake species Merluccius paradoxus and M. capensis in the southern Benguela ecosystem

    Get PDF
    Larval mortality in marine fish is strongly linked to characteristic traits such as growth and condition, but the variability in these traits is poorly understood. We tried to identify the variability in growth in relation to conditions leading to greater survival chances for early stages of Cape hake, Merluccius paradoxus and M. capensis, in the Benguela upwelling ecosystem. During two cruises in 2007 and one cruise in 2008, hake larvae and juveniles were caught. Otolith microstructures revealed a larval age ranging from 2 to 29 days post-hatching (dph), whereas juvenile age was 67–152 dph. RNA:DNA ratios, used to evaluate nutritional condition, were above the relevant threshold level for growth. No strong coupling between growth and condition was detected, indicating a complex relationship between these factors in the southern Benguela ecosystem. Merluccius paradoxus juveniles caught in 2007 (the surviving larvae of 2006) had significantly higher larval growth rates than larvae hatched in 2007 and 2008, possibly indicating selection for fast growth in 2006. High selection pressure on growth could be linked to predation avoidance, including cannibalism

    Chokka squid on the Agulhas Bank: life history and ecology

    Get PDF
    Available knowledge is reviewed and new data incorporated in a synthesis of the life history and ecology of the chokka squid Loligo vulgaris reynaudii. We attempt to show that these aspects are essential to rational management of the resource. The life cycle is descriptionbed in detail from the egg to adult stage, mainly in biological terms, including a comprehensive descriptionption of maturation, migration and reproduction. Possible ecological interactions, particularly those of paralarvae and copepods, are discussed. Predator-prey relationships and the current state of knowledge on the effect of the physical environment on squid availability and abundance are summarized

    Future challenges in cephalopod research

    Get PDF
    We thank Anto´nio M. de Frias Martins, past President of the Unitas Malacologica and Peter Marko, President of the American Malacological Society for organizing the 2013 World Congress of Malacology, and the Cephalopod International Advisory Committee for endorsing a symposium held in honour of Malcolm R. Clarke. In particular, we would like to thank the many professional staff from the University of the Azores for their hospitality, organization, troubleshooting and warm welcome to the Azores. We also thank Malcolm Clarke’s widow, Dorothy, his daughter Zoe¨, Jose´ N. Gomes-Pereira and numerous colleagues and friends of Malcolm’s from around the world for joining us at Ponta Delgada. We are grateful to Lyndsey Claro (Princeton University Press) for granting copyright permissions.Peer reviewedPublisher PD

    Semantic Web integration of Cheminformatics resources with the SADI framework

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The diversity and the largely independent nature of chemical research efforts over the past half century are, most likely, the major contributors to the current poor state of chemical computational resource and database interoperability. While open software for chemical format interconversion and database entry cross-linking have partially addressed database interoperability, computational resource integration is hindered by the great diversity of software interfaces, languages, access methods, and platforms, among others. This has, in turn, translated into limited reproducibility of computational experiments and the need for application-specific computational workflow construction and semi-automated enactment by human experts, especially where emerging interdisciplinary fields, such as systems chemistry, are pursued. Fortunately, the advent of the Semantic Web, and the very recent introduction of RESTful Semantic Web Services (SWS) may present an opportunity to integrate all of the existing computational and database resources in chemistry into a machine-understandable, unified system that draws on the entirety of the Semantic Web.</p> <p>Results</p> <p>We have created a prototype framework of Semantic Automated Discovery and Integration (SADI) framework SWS that exposes the QSAR descriptor functionality of the Chemistry Development Kit. Since each of these services has formal ontology-defined input and output classes, and each service consumes and produces RDF graphs, clients can automatically reason about the services and available reference information necessary to complete a given overall computational task specified through a simple SPARQL query. We demonstrate this capability by carrying out QSAR analysis backed by a simple formal ontology to determine whether a given molecule is drug-like. Further, we discuss parameter-based control over the execution of SADI SWS. Finally, we demonstrate the value of computational resource envelopment as SADI services through service reuse and ease of integration of computational functionality into formal ontologies.</p> <p>Conclusions</p> <p>The work we present here may trigger a major paradigm shift in the distribution of computational resources in chemistry. We conclude that envelopment of chemical computational resources as SADI SWS facilitates interdisciplinary research by enabling the definition of computational problems in terms of ontologies and formal logical statements instead of cumbersome and application-specific tasks and workflows.</p
    corecore