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Magnetic translation groups in an n-dimensional torus and
their representations

Shogo Tanimuraa)

Department of Engineering Physics and Mechanics, Kyoto University,
Kyoto 606-8501, Japan

~Received 7 May 2002; accepted 6 August 2002!

A charged particle in a uniform magnetic field in a two-dimensional torus has a
discrete noncommutative translation symmetry instead of a continuous commuta-
tive translation symmetry. We study topology and symmetry of a particle in a
magnetic field in a torus of arbitrary dimensions. The magnetic translation group
~MTG! is defined as a group of translations that leave the gauge field invariant. We
show that the MTG in ann-dimensional torus is isomorphic to a central extension
of a cyclic groupZn1

3¯3Zn2l
3Tm by U(1) with 2l 1m5n. We construct and

classify irreducible unitary representations of the MTG in a three-torus and apply
the representation theory to three examples. We briefly describe a representation
theory for a generaln-torus. The MTG in ann-torus can be regarded as a gener-
alization of the so-called noncommutative torus. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1513208#

I. INTRODUCTION

Many people have been studying dynamics of an electrically charged particle in a magnetic
field for various interests. Landau found that the energy spectrum of an electron becomes discrete
when a magnetic field is applied, and explained the diamagnetic property of a metal. The quantum
Hall effect looked a peculiar phenomenon when it was first discovered but today it is understood
as a universal phenomenon observable in a two-dimensional electron system in a magnetic field.
Dynamics of charged particles in a magnetic field is still an active research area.

Here we examine a group-theoretical aspect of the quantum system in a magnetic field. In
particular we compare symmetry in a torus with symmetry in a Euclidean space. We would like to
understand how the symmetry structure of the dynamical system is affected by the topological
structure of the underlying space. It is known that the translation symmetry group becomes
noncommutative when a uniform magnetic field is introduced into the Euclidean space. Moreover,
the translation symmetry group becomes discrete when the underlying space is replaced by a torus.
In this article we consider a vector potential

A5 (
j ,k51

n

xjv jkdxk1(
j 51

n

a jdxj ~1.1!

over ann-dimensional torusTn5Rn/Zn. Herev jk are arbitrary integers anda j are real numbers.
Then the corresponding magnetic field is given by the two-form

B5dA5 (
j ,k51

n
1

2
~v jk2vk j!dxj∧dxk . ~1.2!

We conclude that the magnetic translation group~MTG! in Tn is
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SA5~R3vVn!/~Z3vZn!, ~1.3!

whereVn is a subgroup ofRn defined byVn5$vPRnu(v2 tv)vPZn% and the group operation in
R3vRn is defined by

~x0 ,x1 ,...,xn!•~y0 ,y1 ,...,yn!5S x01y01 (
j ,k51

n

xjv jkyk ,x11y1 ,...,xn1ynD . ~1.4!

This characterization of the magnetic translation symmetry is one of the main results of this
article. The MTG is actually a central extension of a cyclic group

Zm1
3¯3Zm l

3Zn1
3¯3Zn l

3Tm ~2l 1m5n! ~1.5!

by S15U(1). Webuild a complete set of irreducible representations of the MTG inT3. We also
describe a method to build irreducible representations of the MTG inTn.

We would like to briefly review studies by other people on a quantum system in a magnetic
field. Brown1 found that the translation symmetry of an electron in a lattice in a uniform magnetic
field is noncommutative and that the quantum system obeys a projective representation of the
translation group. At the almost same time2 and later3 Zak built a representation theory of the
lattice translation group in a magnetic field. Ashby and Miller4 considered a space–time lattice of
a finite size in uniform electric and magnetic fields and proposed an electromagnetic translation
group. Avron, Herbst, and Simon have been studying spectral problems of the Schro¨dinger opera-
tors in a magnetic field in a series of papers.5–8 Particularly, in Ref. 6 they examined a system of
particles in a uniform magnetic field and characterized a constant of motion analogous to the total
momentum. Dubrovin and Novikov9,10 studied the spectrum of the Pauli operator in a two-
dimensional lattice with a periodic magnetic field and intensively analyzed the gap structure above
the ground state. Asch, Over, and Seiler11 clarified how the inequivalent Hamiltonians on a torus
in a magnetic field are induced from a Hamiltonian on the universal covering space of the torus.
In a series of studies12–17Lulek, Florek, Lipinski, and Walcerz established a systematic method to
construct central extensions of a finitely generated Abelian group. Their results are equivalent to
the MTGs in a lattice. Kuwabara18,19 is studying relations between the trajectories of a classical
particle and the spectra of its quantized system and has obtained many results. Gruber20 also
examined quantization of a particle on a Riemannian manifold in a magnetic field from a view
point of geometric quantization.

As reviewed above, a lot of studies on dynamics and symmetry in a magnetic field have been
done. Although MTGs in a finite lattice and in an infinite lattice have been much investigated, the
MTG in a torus of arbitrary dimensions is not yet fully investigated. Motivated by a recent
study21,22 on extra dimensions of the space–time, Sakamotoet al.23–25 are developing field theo-
retical models in which the translation symmetry of an extra circle is spontaneously broken by a
nontrivial boundary condition in the extraS1. Moreover, we are developing models26,27 in which
the rotation symmetry of an extra two-sphere is spontaneously broken by a magnetic monopole in
the extraS2. So we would like to understand how a background gauge field in a compact space
influences symmetry structure of a quantum system. Hence we decide to investigate symmetry in
a magnetic field in a torus.

This article is organized as follows. In Sec. II we shall examine how symmetry of a quantum
system in a magnetic field is changed when the underlying two-dimensional Euclidean space is
replaced by a two-dimensional torus. In Sec. III we extend our discussion to ann-dimensional
torus. We introduce a noncommutative group structure intoRn11 and use it to construct a mag-
netic fiber bundle, which is a bundle overTn with a fiberS1. In Sec. IV we classify topological
structures of the bundles. In Sec. V we define connections, which are generalizations of a vector
potential, and classify them. In Sec. VI we define a magnetic translation group as a group of lifted
translations that leave the connection invariant. In Sec. VII we build a representation theory of the
MTG for T3 and illustrate the theory by a few examples. In Sec. VIII we describe an outline of the
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representation theory of the MTG for a generalTn. Section IX is devoted to conclusions and
discussions. To reach the main result quickly the reader may read only Secs. III, V, and VI.

II. SYMMETRIES IN A MAGNETIC FIELD

This section is devoted to exercises to get ideas about the problem. The reader may skip this
section and restart from Sec. III without missing the main course of the article.

A. Euclidean space

Let us begin our discussion by examining symmetry of quantum mechanics of a particle in the
uniform magnetic field inR2. It is a well-known system and becomes a starting point to explore
further nontrivial systems.

A uniform magnetic fieldBdx∧dy5dA is derived from a vector potentialA5Bx dy. The
Schrödinger equation is

Hc5F2
1

2 S ]

]xD 2

2
1

2 S ]

]y
2 iBxD 2Gc~x,y!5Ec. ~2.1!

Then the operators

P̃xª2 i
]

]x
2By, Pyª2 i

]

]y
~2.2!

commute withH. These generate unitary transformations

~Ux~a!c!~x,y!5e2 i P̃xac~x,y!5eiBayc~x2a,y!, ~2.3!

~Uy~b!c!~x,y!5e2 iPybc~x,y!5c~x,y2b!. ~2.4!

It is to be noted thatUx(a) is a combination of a translation in thex-direction by the lengtha and
a gauge transformation. It is also to be noted that the translation in thex-direction and the one in
the y-direction do not commute but satisfy

Ux~a!Uy~b!~Ux~a!!21~Uy~b!!215eiBab. ~2.5!

The momentum generates a continuous symmetry and enables us to separate the variables. For
example, if we put the eigenvalue ofPy ask, the wave function is factorized as

c~x,y!5eikyf~x!. ~2.6!

Then the Schro¨dinger equation~2.1! is rewritten as

Hc5eikyF2
1

2 S ]

]xD 2

1
1

2
~k2Bx!2Gf~x!5eikyEf~x! ~2.7!

and is reduced to the equation of a harmonic oscillator. Hence the energy eigenvalues are given by

E5uBu~n1 1
2! ~n50,1,2,...! ~2.8!

and are called the Landau levels. Each eigenvalue is infinitely degenerated with respect to2`
,k,`.

B. Torus

Next we turn to a two-dimensional torus. The two-torusT2 is defined as the quotient space
R2/Z2. Namely, the points inR2,
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~x,y!;~x11,y!;~x,y11!, ~2.9!

are identified as a single point inT2. If we impose a pseudoperiodic condition

c~x11,y!5eiByc~x,y!, c~x,y11!5c~x,y!, ~2.10!

on the wave function, the Schro¨dinger equation~2.1! is well defined overT2. In other words, on
the space of functions satisfying the pseudoperiodic condition, the operatorH becomes self-
adjoint. To make the two conditions in~2.10! compatible each other we need to have

c~x11,y11!5eiB(y11)c~x,y11!5eiBeiByc~x,y!5c~x11,y!5eiByc~x,y!. ~2.11!

Hence we should haveeiB51. Namely, in the magnetic field strength

B52pn, ~2.12!

n must be an integer. We calln the magnetic flux number of the torus.
The operatorsP̃x andPy in ~2.2! commute withH defined in~2.1!. However, when they act

on a wave function satisfying the pseudoperiodic condition~2.10!, they do not give back a func-
tion satisfying the pseudoperiodic condition but instead give

Pyc~x11,y!5eiBy~Py1B!c~x,y!, ~2.13!

P̃xc~x,y11!5~ P̃x2B!c~x,y!. ~2.14!

Hence, the actions of these operators are not closed in the space of pseudoperiodic functions. Thus
we get a lesson thatthe generator of infinitesimal translation does not exist in the torus. However,
it is still possible to construct operators for finite translations. We let the finite translation operators
~2.3! and ~2.4! act on a pseudoperiodic function~2.10!, and examine whether the resultant func-
tions satisfy the pseudoperiodic condition. Using the flux quantization~2.12! we get

~Ux~a!c!~x,y11!5eiBa(y11)c~x2a,y11!

5eiBaeiBayc~x2a,y!

5e2p ina~Ux~a!c!~x,y!, ~2.15!

~Uy~b!c!~x11,y!5c~x11,y2b!

5eiB(y2b)c~x,y2b!

5e2 iBbeiByc~x,y2b!

5e22p inbeiBy~Uy~b!c!~x,y!. ~2.16!

Therefore, the transformed wave functions,Ux(a)c andUy(b)c, satisfy the pseudoperiodic con-
dition ~2.10! if and only if

na,nbPZ. ~2.17!

Consequently, the lengths of shifts,a andb, are restricted to integral multiples of 1/n. Moreover,
on a pseudoperiodic function the shifts by the unit length act as

~Ux~1!c!~x,y!5eiByc~x21,y!5c~x,y!, ~2.18!

~Uy~1!c!~x,y!5c~x,y21!5c~x,y!. ~2.19!
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HenceUx(1) andUy(1) are identity operators. Thus the operatorsUx(1/n) andUy(1/n) generate
a cyclic groupZn5Z/nZ of the ordern. However, as seen in~2.5! their commutator produces a
nontrivial phase factor. Thus we conclude that the symmetry of the quantum system in the torus
magnetic field is described by a projective representation ofZn3Zn .

The group of translations of the quantum system in the magnetic field is called a magnetic
translation group~abbreviated as MTG!. A more precise definition of the MTG will be given in
Sec. VI. In the torus the MTG becomes discrete and finite. Its representation is constructed as
follows. Let $u0&,u1&,...,un21&% be a basis of the representation space. Then we define the action
of the translation operators by

Ux~nx /n!uq&5e2p inxq/nuq&, ~2.20!

Uy~ny /n!uq&5uq1ny~mod n!&, ~2.21!

for nx ,nyPZ. We can easily verify that they satisfy

Ux~nx /n!Uy~ny /n!~Ux~nx /n!!21~Uy~ny /n!!21uq&5ei (2pn)(nx /n)(ny /n)uq&, ~2.22!

which is homomorphic to the commutator~2.5!. This representation is irreducible and its dimen-
sion isn. Hence each energy eigenvalue~2.8! is degenerated byn folds.

C. Three-torus

Let us examine the case of a three-dimensional torus briefly to motivate further discussion.
With real constants (b1 ,b2 ,b3) a vector potential

A5b1x2dx31b2x3dx11b3x1dx2 ~2.23!

gives rise to a magnetic field

B5dA5b1dx2∧dx31b2dx3∧dx11b3dx1∧dx2 . ~2.24!

The Hamiltonian is then given by

Hc52
1

2 F S ]

]x1
2 ib2x3D 2

1S ]

]x2
2 ib3x1D 2

1S ]

]x3
2 ib1x2D 2Gc~x1 ,x2 ,x3!. ~2.25!

On the three-torus the wave function must satisfy a set of conditions

c~x111,x2 ,x3!5eib3x2c~x1 ,x2 ,x3!,

c~x1 ,x211,x3!5eib1x3c~x1 ,x2 ,x3!, ~2.26!

c~x1 ,x2 ,x311!5eib2x1c~x1 ,x2 ,x3!,

which is a generalization of the the pseudoperiodic condition~2.10! of the two-torus.
We would like to find a complete set of translation operators that commute withH and are

compatible with the pseudoperiodic condition~2.26!. Of course, if the magnetic field is parallel to
one of the axes, the system is reduced to the two-torus as has been discussed by Zak.3 For
example, if (b1 ,b2 ,b3)5(0,0,B), the Hamiltonian~2.25! and the condition~2.26! are reduced to
~2.1! and~2.10!, respectively. However, it is a highly nontrivial and not yet fully solved problem
to find a complete symmetry group for an inclined magnetic field (b1 ,b2 ,b3). Thus we decide to
develop a more systematic method to construct the translation symmetry group for a generic
magnetic field in then-torus.

5930 J. Math. Phys., Vol. 43, No. 12, December 2002 Shogo Tanimura
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III. MAGNETIC FIBER BUNDLE

We shall extend the previous consideration on the two-dimensional torus to arbitrary dimen-
sions. What we will do in the rest of this article is to constructU(1) principal fiber bundles over
an n-dimensional torusTn, to classify the bundles, to introduceU(1) connections with constant
curvatures overTn, to define the MTG as the stability group of each connection, and to construct
the representations of the MTGs. Throughout this article we are identifyingS1 with U(1).

Let us begin with construction ofS1 principal fiber bundles overTn. For this purpose we
introduce a noncommutative group structure intoRn11 as follows. Take ann3n matrix v which
consists of integers,v jkPZ ( j ,k51,...,n). The matrixv is not necessarily antisymmetric. Define
a product of (x0 ,x1 ,...,xn),(y0 ,y1 ,...,yn)PRn11 by

~x0 ,x1 ,...,xn!•~y0 ,y1 ,...,yn!ªS x01y01 (
j ,k51

n

xjv jkyk ,x11y1 ,...,xn1ynD . ~3.1!

In the following we abbreviate the notation of the vectors asx5(x1 ,...,xn)PRn. We write the
inner product of vectors asxy5( j 51

n xj yj and the bilinear form asxvy5( j ,k51
n xjv jkyk . It is

easily verified that the setRn11 becomes a group with this product operation; the associativity is
satisfied as

~~x0 ,x!•~y0 ,y!!•~z0 ,z!5~x01y01xvy,x1y!•~z0 ,z!

5~x01y01z01xvy1~x1y!vz,~x1y!1z!

5~x01y01z01xvy1xvz1yvz,x1y1z!

5~x01y01z01xv~y1z!1yvz,x1~y1z!!

5~x0 ,x!•~~y0 ,y!•~z0 ,z!!, ~3.2!

the unit element is given by (0,0)PR3Rn, and the inverse element of (x0 ,x)PR3Rn is given by

~x0 ,x!215~2x01xvx,2x!. ~3.3!

The setRn11 equipped with this group structure is denoted byR3vRn. A commutator is calcu-
lated as

~x0 ,x!•~y0 ,y!•~x0 ,x!21
•~y0 ,y!215~x01y01xvy,x1y!•~2x01xvx,2x!•~2y01yvy,2y!

5~y01xvy1xvx2~x1y!vx,y!•~2y01yvy,2y!

5~xvy1xvx2~x1y!vx1yvy2yvy,0!5~xvy2yvx,0!,

~3.4!

and thereforeR3vRn is Abelian if and only ifv is a symmetric matrix. The natural projection
map R3vRn→Rn becomes a group homomorphism. As its kernelR3v$0% is contained in the
center ofR3vRn, the groupR3vRn is a central extension ofRn by R.

The subsetZ3vZn5$(m0 ,m1 ,...,mn)um0 ,mjPZ% is also a subgroup ofR3vRn but it is not
isomorphic to the standard Abelian groupZn11. The subgroupZ3vZn acts freely onR3vRn

from the left via the group operation. Hence the space of orbits

Pv
n11

ª~Z3vZn!\~R3vRn! ~3.5!

becomes a smooth manifold.
The group operation also induces action of the groupR3vRn on the spacePv

n11 from the
right. The subgroupsZ3v$0%,R3v$0% are contained in the center ofR3vRn and hence their
actions from the right are equivalent to those from the left. The subgroupsR3v$0% and Z
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3v$0% are isomorphic toR and Z, respectively. ThusR acts onPv
n11 but its subgroupZ acts

trivially on Pv
n11 sinceZ is contained in the dividing groupZ3vZn of the quotient space~3.5!.

Therefore the action ofR is reduced to the effective action ofS15R/Z on Pv
n11 . The space of

orbit Pv
n11/S1 is diffeomorphic to a torusTn. Consequently we obtain a principal fiber bundle

with the canonical projection mappv :Pv
n11→Tn with a structure groupS1. We call this fiber

bundle amagnetic fiber bundle twisted by the matrixv. The procedure to construct the magnetic
fiber bundle is summarized by the following commutative diagram:

Z3v$0% → Z3vZn → Zn

↓ ↓ ↓
R3v$0% → R3vRn → Rn

↓ ↓ ↓
S1 → Pv

n11 →
pv

Tn

. ~3.6!

A function f :Pv
n11→C is identified with a functionf :R3vRn→C that is invariant under

action ofZ3vZn from the left as

f ~m01x01mvx,m1x!5 f ~x0 ,x!, ~m0 ,m!PZ3vZn. ~3.7!

Moreover, when the functionf :Pv
n11→C satisfies

f ~x01t,x!5e22p i t f ~x0 ,x!, tPR, ~3.8!

it is called an equivariant function onPv
n11 . Hence the equivariant functionf has the property

f ~x0 ,x1m!5e2p imvxf ~x0 ,x!, mPZn. ~3.9!

This is a generalization of the pseudoperiodic condition~2.10!,

c~x11,y!5e2p inyc~x,y!, c~x,y11!5c~x,y!. ~3.10!

In fact, if we take the matrix

v5S 0 n

0 0D , ~3.11!

the general condition~3.9! of Tn is reduced to the specific one~3.10! of T2.

IV. EQUIVALENT MAGNETIC BUNDLES

In the above construction each magnetic fiber bundle is specified by an integral matrixv.
However, it can happen that different matricesv andv8 give rise to equivalent fiber bundles. In
this section we prove thatv andv8 induce equivalent fiber bundles if and only if the difference
v82v is a symmetric integral matrix. Therefore, we may choose a representative matrixv such
that v jk50 for j >k. Namely, the upper triangle matrix

v5S 0 v12 v13 ¯ v1,n21 v1n

0 0 v23 ¯ v2,n21 v2n

0 0 0 ¯ v3,n21 v3n

] ] ] � ] ]

0 0 0 ¯ 0 vn21,n

0 0 0 ¯ 0 0

D ~4.1!

5932 J. Math. Phys., Vol. 43, No. 12, December 2002 Shogo Tanimura
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with integersv jk can be taken as a standard form of the matrixv. The reader will not miss the
main result of the article even if he skips this section and restarts from Sec. V.

Here we introduce three kinds of isomorphisms that convert a bundle specified by a matrixv
to a bundle specified by another matrixv8.

Let us introduce the first kind of bundle isomorphism. When a symmetric matrixs of integral
elements,s jk5sk jPZ, satisfies

(
j ,k51

n

mjs jkmkP2Z ~4.2!

for any m5(m1 ,...,mn)PZn, we call s an even symmetric matrix. This requirement fors is
equivalent to demanding that the off-diagonal elementss jk are integers and that the diagonal
elementss j j are even integers. Here we will show that two magnetic bundlesPv

n11 andPv1s
n11 are

isomorphic each other for any even symmetric matrixs. For this purpose let us define a map
fs :R3vRn→R3v1sRn by

fs~x0 ,x!ª~x01 1
2 xsx,x!. ~4.3!

Existence of the inverse map is obvious; it is given byfs
21(x0 ,x)5(x02 1

2xsx,x). It is easily
verified that the mapfs is a group isomorphism as

fs~~x0 ,x!•v~y0 ,y!!5fs~x01y01xvy,x1y!

5~x01y01xvy1 1
2 ~x1y!s~x1y!,x1y!

5~x01y01 1
2 xsx1 1

2 ysy1x~v1s!y,x1y!

5~x01 1
2 xsx,x!•v1s~y01 1

2 ysy,y!

5fs~x0 ,x!•v1sfs~y0 ,y!, ~4.4!

where we have distinguished the product operation ofR3v1sRn from that ofR3vRn. The map
fs sends the integer subgroupZ3vZn to Z3v1sZn, sinces is even as required in~4.2!. There-
fore, fs induces a diffeomorphism

~fs!* :~Z3vZn!\~R3vRn!→~Z3v1sZn!\~R3v1sRn!. ~4.5!

Moreover, sincefs is the identity map when it is restricted onR3v$0%,

fs~~ t,0!•v~x0 ,x!!5fs~ t,0!•v1sfs~x0 ,x!5~ t,0!•v1sfs~x0 ,x!, ~4.6!

thus (fs)* is equivariant with respect to the action ofS1. It is also clear thatpv5pv1s

+(fs)* . Thus we conclude that the map (fs)* is an isomorphism between the principal fiber
bundlesPv

n11 andPv1s
n11 .

Next we shall introduce the second kind of bundle isomorphism. We identify a diagonal
matrix D5diag(D1,D2,...,Dn) with a vector D5(D1 ,D2 ,...,Dn)PZn. Then we define a map
fD :R3vRn→R3v1DRn by

fD~x0 ,x!ªS x01
1

2
xDx1

1

2
Dx,xD5S x01

1

2 (
j 51

n

~xjD j xj1D j xj !,xD . ~4.7!

It is also easily verified thatfD is a group isomorphism as
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fD~~x0 ,x!•v~y0 ,y!!5fD~x01y01xvy,x1y!

5~x01y01xvy1 1
2 ~x1y!D~x1y!1 1

2 D~x1y!,x1y!

5~x01y01 1
2 xDx1 1

2 Dx1 1
2 yDy1 1

2 Dy1x~v1D!y,x1y!

5~x01 1
2 xDx1 1

2 Dx,x!•v1D~y01 1
2 yDy1 1

2 Dy,y!

5fD~x0 ,x!•v1DfD~y0 ,y!. ~4.8!

Note that whenxj is an integer,xj
21xj5xj (xj11) is always an even integer and hence1

2D j (xj
2

1xj ) is an integer. Therefore the mapfD sends the integer subgroupZ3vZn to Z3v1DZn.
Moreover,fD sendsR3v$0% to R3v1D$0% identically. Thus the induced map (fD)* becomes an
isomorphism between the principal fiber bundlesPv

n11 andPv1D
n11 .

There is the third kind of bundle isomorphism, which will be used when we classify connec-
tions later. For each«5(«1 ,«2 ,...,«n)PZn we define a mapf« :R3vRn→R3vRn by

f«~x0 ,x!ª~x01«x,x!5S x01(
j 51

n

« j xj ,xD . ~4.9!

It is also easily verified thatf« is a group isomorphism as

f«~~x0 ,x!•v~y0 ,y!!5f«~x01y01xvy,x1y!

5~x01y01xvy1«~x1y!,x1y!

5~x01«x1y01«y1xvy,x1y!

5~x01«x,x!•v~y01«y,y!5f«~x0 ,x!•vf«~y0 ,y!. ~4.10!

The mapf« sends the integer subgroupZ3vZn to Z3vZn. Moreover,f« sendsR3v$0% to R
3v$0% identically. Thus the group isomorphismf« induces an automorphism (f«)* of the prin-
cipal fiber bundlePv

n11 .
As a summary, we write down a combined isomorphism of the three kinds of maps

~f«+fD+fs!~x0 ,x!ª~x01 1
2 x~s1D!x1 1

2 Dx1«x,x!. ~4.11!

By adding an integral diagonal matrixD to an even symmetric matrixs, we can make any integral
symmetric matrixs85s1D. Therefore, by combining the first and second kinds of isomor-
phisms,fs andfD , we can establish an isomorphism betweenPv

n11 andPv1s8
n11 for any integral

symmetric matrixs8. In other words, the set of magnetic fiber bundles has a one-to-one corre-
spondence with Mat(n,Z)/Sym(n,Z), where the quotient is taken in the sense of additive groups.

V. CONNECTION

In this section we define the vector potentials that yield uniform magnetic fields in an
n-dimensional torus. We use the words, a vector potential, a gauge field, and a connection, to
describe the same notion. Magnetic field strength and curvature are an identical notion.

Let us define a differential one-formA on R3vRn by

Aª2dx01 (
j ,k51

n

xjv jkdxk1(
j 51

n

a jdxj52dx01xvdx1adx ~5.1!

with a real vectoraPRn. These parametersa5(a1 ,...,an) characterize the Aharonov–Bohm
effect. The action of (m0 ,m)PZ3vZn from the left of R3vRn defines a mapw:(x0 ,x)°(m0

1x01mvx,m1x). Note that the one-formA is invariant under the transformation byw as
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w* A52~dx01mvdx!1~m1x!vdx1adx5A. ~5.2!

ThusA can be regarded as a one-form onPv
n115(Z3vZn)\(R3vRn). It is also obvious thatA

is invariant under a transformation (x0 ,x)°(x01t,x) for any tPR. Moreover,A satisfies

K ]

]x0
,AL 521 ~5.3!

by the definition. In the above equation,^•,•& denotes the pairing of a vector and a one-form. Thus
A satisfies the axiom of a connection form of the principal bundlepv :Pv

n11→Tn.
We can classify the connections using isomorphism maps introduced in the last section. The

connectionAv,a defined by~5.1! is parametrized by an integral matrixvPMat(n,Z) and a real
vector aPRn. For any even symmetric matrixsPEvenSym(n,Z) and integral vectorsD,«
PZn, the combined isomorphism~4.11! induces a transformation

~f«+fD+fs!* Av1s1D,a1 1/2D1«

52d~x01 1
2 x~s1D!x1 1

2 Dx1«x!1x~v1s1D!dx1~a1 1
2 D1«!dx

52dx02x~s1D!dx2 1
2 Ddx2«dx1x~v1s1D!dx1~a1 1

2 D1«!dx

52dx01xvdx1adx

5Av,a ~5.4!

via pullback. Thus the connections are classified by the equivalence relation

~v,a!;~v1s1D,a1 1
2 D1«!, sPEvenSym~n,Z!;D,«PZn ~5.5!

among (v,a)PMat(n,Z)3Rn.
Next we define a covariant derivative of the equivariant functionf by

D fªd f22p iA f . ~5.6!

Of course, on the right-hand side,i 5A21. The curvature formF is defined by

FªdA5 (
j ,k51

n

v jkdxj∧dxk5 (
j ,k51

n
1

2
~v jk2vk j!dxj∧dxk , ~5.7!

which gives a constant magnetic field. Hence the first Chern class is uniquely specified by the
integral antisymmetrized matrix (v2 tv). It is known28 that anS1-fiber bundle has a one-to-one
correspondence with the first Chern class. Therefore, by choosingvPMat(n,Z) appropriately, we
can construct any principal fiber bundles overTn with the fiberS1.

VI. MAGNETIC TRANSLATION GROUP

Now we shall examine translation symmetry of the vector potentialA of the uniform magnetic
field. In this section we shall give a precise definition of the MTG inTn and express the MTG in
a more concrete form. We will prove that the MTG is

SA5~R3vVn!/~Z3vZn!, ~6.1!

whereVn is a subgroup ofRn defined byVn5$vPRnu(v2 tv)vPZn% and the group operation is
taken in the sense of~3.1!. This is one of the main results of this article.

We begin by defining the MTG. A vectorvPRn generates a translation ofTn by
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tv :Tn→Tn, x°x1v. ~6.2!

When a mapt̃v :Pv
n11→Pv

n11 satisfies the commutative diagram

S1

↙ ↘

Pv
n11 →

t̃

Pv
n11

pv↓ ↓pv

Tn →
t

Tn

~6.3!

the mapt̃v is called a lift of the translationtv . The lifted translations that leave the connectionA
invariant form a group

SAª$t̃v :Pv
n11→Pv

n11uvPRn,pv+ t̃v5tv+pv ; t̃v* A5A%. ~6.4!

We call it the stability group ofA, or the magnetic translation group~MTG!.
Let us write down the lifted translation in a more explicit form. We use (x0 ,x)PRn11 as a

coordinate ofPv
n11 . Sincepv+ t̃v5tv+pv , the lift t̃v of ~6.2! must have the form

t̃v :~x0 ,x!°~x01u~x0 ,x,v !,x1v !. ~6.5!

To maket̃v commutative with the action ofe2p iw0PS1 the functionu must satisfy

x01w01u~x01w0 ,x,v !5x01u~x0 ,x,v !1w0 , ~6.6!

namely,u must satisfy

u~x01w0 ,x,v !5u~x0 ,x,v ! ~6.7!

for any w0PR. Therefore, the functionu is independent ofx0 . To become a map ofPv
n11 , the

map t̃v must send an orbit of the left-action ofZ3vZn to an orbit of the same group. In other
words, for any (m0 ,m)PZ3vZn there must exist an element (m08 ,m8)PZ3vZn that satisfies

t̃v~~m0 ,m!•~x0 ,x!!5~m08 ,m8!• t̃v~x0 ,x!. ~6.8!

The above equation is rewritten as

~m01x01mvx1u~m1x,v !,m1x1v !5~m081x01u~x,v !1m8v~x1v !,m81x1v !,

which is equivalent to a set of equations

m5m8, ~6.9!

m01mvx1u~m1x,v !5m081u~x,v !1m8v~x1v !. ~6.10!

The last equation implies that

u~m1x,v !2u~x,v !2mvv5m082m0PZ ~6.11!

for any mPZn. In reverse order, any functionu(x,v) satisfying the condition~6.11! defines a
lifted translationt̃v by ~6.5!. The lifted translationt̃v is actually a combination of a spatial shift by
v with a gauge transformation byu. Hence, we finish characterizing the lifted translations.

Let the lifted translationt̃v act on the connection formA of ~5.1! via pull-back. Then it gives
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t̃v* A52~dx01du!1~x1v !vd~x1v !1ad~x1v !5A2du1vvdx. ~6.12!

Hence, to leave the connection invariant ast̃v* A5A, the functionu must satisfy a differential
equationdu5vvdx. Thus we have

u~x,v !5vvx1v0 ~6.13!

with a constantv0PR. To maket̃v a map ofPv
n11 , the functionu must satisfy the condition

~6.11!, which requires that

u~m1x,v !2u~x,v !2mvv5vvm2mvv52m~v2 tv!vPZ ~6.14!

for any mPZn. Therefore, the vectorvPRn is required to satisfy

~v2 tv!vPZn. ~6.15!

We call the vectorv satisfying~6.15! a magnetic shift. A set of the magnetic shifts is denoted by

Vn
ª$vPRnu~v2 tv!vPZn%. ~6.16!

The setVn becomes an additive subgroup ofRn. When the antisymmetrized matrix (v2 tv) is
nondegenerated,Vn is discrete. The lifted translationt̃v defined by~6.5! with ~6.13! becomes

t̃v :~x0 ,x!°~x01u~x0 ,x,v !,x1v !5~x01vvx1v0 ,x1v !5~v0 ,v !•~x0 ,x!, ~6.17!

and therefore the action oft̃v is identified with the action of (v0 ,v)PR3vVn on Pv
n11 from the

left. However, the subgroupZ3vZn,R3vVn acts onPv
n11 trivially. Thus the stability groupSA

of the connectionA is identified as

SA5~R3vVn!/~Z3vZn!. ~6.18!

This is one of the main results of this article. Note thatSA is a central extension of a compact
Abelian groupVn/Zn by S15R/Z.

Actually, there is another way to characterize the groupSA . The groupR3vVn is a normal-
izer of N5Z3vZn in G5R3vRn. In other words, the subgroupH defined by

Hª$hPGu;nPN,hnh21PN% ~6.19!

coincides withR3vVn. The above statement is easily proved as follows. A straightforward
calculation yields

~x0 ,x!•~m0 ,m!•~x0 ,x!215~m01x~v2 tv!m,m!. ~6.20!

Therefore the necessary and sufficient condition for (x0 ,x)PR3vRn to bring the above element
into N5Z3vZn is that (v2 tv)xPZn, or thatxPVn. ThusN5Z3vZn is a normal subgroup of
H5R3vVn, and hence the quotient groupSA5H/N is well defined.

VII. REPRESENTATIONS OF THE MTG IN A THREE-TORUS

A unitary representation theory of the MTG is significant for spectral analyses of the Laplace
operator and the Dirac operator in a background gauge field. In this section we examine a three-
dimensional torus and construct a complete set of representations. This is another main result of
this article. In the next section we will discuss an outline of the representation theory of the MTG
for arbitrary dimensions.
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A. Method

The MTG was identified asSA5(R3vVn)/(Z3vZn) at ~6.18!. We would like to express the
MTG in terms of generators and relations. Here we concentrate on the three-dimensional torus. Let
us take the matrix

v5S 0 b3 2b2

0 0 b1

0 0 0
D ~7.1!

with positive integersb1 , b2 , andb3 . Then antisymmetrization ofv yields

v2 tv5S 0 b3 2b2

2b3 0 b1

b2 2b1 0
D . ~7.2!

The characteristic equation of (v2 tv) is

det~l2~v2 tv!!5l~l21b1
21b2

21b3
2!. ~7.3!

Hence, its eigenvalues are

l50,6 iB ~7.4!

with BªAb1
21b2

21b3
2. We assume thatBÞ0. The eigenspace forl50 is spanned by

b5S b1

b2

b3

D . ~7.5!

The action of (v2 tv) on a vectorvPR3 is equivalent to the vector product (v2 tv)v5v3b.
The magnetic shift group~6.16! now becomes

V35$vPR3u~v2 tv!vPZ3%. ~7.6!

The linear subspaceRb spanned byb of ~7.5! is a subgroup ofV3.Let us define a generatore0 by

D0ªGCD$b1 ,b2 ,b3%, ~7.7!

e0ª
1

D0
S b1

b2

b3

D . ~7.8!

Here the GCD is an abbreviation of the greatest common divisor while the LCM is an abbreviation
of the least common multiple. It is obvious thate0 is in Z3 and that (v2 tv)e050. The vectore0

is a minimal integral vector in the sense that there is no real numbers such that 0,s,1 and
se0PZ3. There exist other vectorse1, e2, PQ3 that generateV3 as

V35Re0% Ze1% Ze2. ~7.9!

HereQ is the whole set of rational numbers. From~7.6! these generatorse1 ande2 must satisfy

~v2 tv!e1 ,~v2 tv!e2 PZ3. ~7.10!
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These vectors$e1 ,e2 % are minimal magnetic shifts in the sense that there is no real numbers such
that

0,s,1, s~v2 tv!eiPZ3, ~7.11!

for eachi 51,2. Moreover, there are positive integersn1 andn2 such that

n1e1 ,n2e2PZ3. ~7.12!

We demand that the integers$n1 ,n2 % are the smallest cycles in the sense that there is no integer
m such that

0,m,n i , meiPZ3, ~7.13!

for eachi 51,2. Consequently, the decomposition~7.9! yields

and

V3/Z35~R/Z! % ~Z/n1Z! % ~Z/n2Z!. ~7.14!

Thus an arbitrary elementg of SA5(R3vV3)/(Z3vZ3) is parametrized as

g5~s,te01n1e11n2e2!, s,tPR/Z;n1PZ/n1Z;n2PZ/n2Z. ~7.15!

Let us examine the commutator~3.4!. It is clear that the element (s,0) commutes with any
element. Since (v2 tv)e050, the element (0,te0) also commutes with any element. On the other
hand, (0,e1) and (0,e2) produce a nonvanishing commutator

~0,e1!•~0,e2!•~0,e1!21
•~0,e2!215~g,0! ~7.16!

with

gªe1~v2 tv!e25e1•~e23b!. ~7.17!

From ~7.10! and ~7.12! we can see that

n1g,n2gPZ. ~7.18!

Henceg is a rational number. Letd be the greatest common divisor ofn1 andn2 . If we put n1

5dp1 andn25dp2 , thenp1 andp2 are mutually prime. The above equation~7.18! implies that
dg is an integer. So we have

dªGCD$n1 ,n2%, ,ªdgPZ. ~7.19!

Before constructing the representation of the MTG, we need to know how the generators
generate an arbitrary element of the MTG. From the multiplication rule of the groupR3vRn we
deduce that forx,yPRn

~ 1
2 xvx,x!•~ 1

2 yvy,y!5~ 1
2 xvx1 1

2 yvy1xvy,x1y!

5~ 1
2 xvy2 1

2 yvx1 1
2 ~x1y!v~x1y!,x1y!

5~ 1
2 x~v2 tv!y,0!•~ 1

2 ~x1y!v~x1y!,x1y! ~7.20!

and

~ 1
2 xvx,x!215~ 1

2 xvx,2x!. ~7.21!
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Iteration of ~7.20! yields

~ 1
2 xvx,x!n5~ 1

2 n2xvx,nx!, nPZ. ~7.22!

Furthermore,~7.20! implies

~ 1
2 s2xvx,sx!•~ 1

2 t2xvx,tx!5~ 1
2 ~s1t !2xvx,~s1t !x!, s,tPR. ~7.23!

By a tedious calculation we can show

~s,x1y1z!5~s2X,0!•~ 1
2 xvx,x!•~ 1

2 yvy,y!•~ 1
2 zvz,z! ~7.24!

with

X5 1
2 ~x1y1z!v~x1y1z!1 1

2 x~v2 tv!y1 1
2 x~v2 tv!z1 1

2 y~v2 tv!z. ~7.25!

Thus an arbitrary element of the MTG is expressed as

g5~s,te01n1e11n2e2!

5~s2 1
2 ~ te01n1e11n2e2!v~ te01n1e11n2e2!2 1

2 gn1n2 ,0!

•~ 1
2 t2e0ve0 ,te0!•~ 1

2 e1ve1 ,e1!n1
•~ 1

2 e2ve2 ,e2!n2

5f~s2X!•g0~ t !•~g1!n1
•~g2!n2, ~7.26!

which is a product of the generators

f~s!ª~s,0!, ~7.27!

g0~ t !ª~ 1
2 t2e0ve0 ,te0!, ~7.28!

g1ª~ 1
2 e1ve1 ,e1!, ~7.29!

g2ª~ 1
2 e2ve2 ,e2!. ~7.30!

These generators satisfy the relations

f~s!•f~ t !5f~s1t !, ~7.31!

f~1!51, ~7.32!

g0~s!•g0~ t !5g0~s1t !, ~7.33!

g0~1!5f~ 1
2 z0!, ~7.34!

~g1!n15f~ 1
2 z1!, ~7.35!

~g2!n25f~ 1
2 z2!, ~7.36!

g1•g2•g1
21

•g2
215f~g! ~7.37!

and other trivial commutators. Here we have defined$z0 ,z1 ,z2% by
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z0ªe0ve05S 1

D0
D 2

b1b2b3 , ~7.38!

z1ªn1
2e1ve1,z2ªn2

2e2ve2. ~7.39!

Becausee0 is an integral vector andv is an integral matrix,z0 is an integer. Furthermore,~7.12!
implies thatz1 andz2 are also integers.

In reverse order, the generators$f(s),g0(t),g1 ,g2% and their relations~7.31!–~7.37! deter-
mine the MTG uniquely. These generators with the relations form the MTG in a constructive
manner. Consequently, the MTG inT3 is completely characterized by the set of parameters
(z0 ,z1 ,z2 ,n1 ,n2 ,g), where$z0 ,z1 ,z2 ,n1 ,n2% are integers andg is a rational number constrained
by the condition~7.18!.

Now we discuss the representation theory of the MTG exhaustively. The space of functions
$ f :Rn11→C% provides the regular representation of the groupR3vRn via

U~v0 ,v ! f ~x0 ,x!ª f ~~v0 ,v !21
•~x0 ,x!!

5 f ~~2v01vvv,2v !•~x0 ,x!!

5 f ~x02v01vvv2vvx,x2v !. ~7.40!

We restrict the representationU on the space of equivariant functions, which are constrained by
~3.7! and ~3.8!. Then we have

U~v0 ,v ! f ~x0 ,x!5e2p i (v02vvv1vvx) f ~x0 ,x2v !, ~7.41!

which reproduces the unitary transformations~2.3! and ~2.4! when the twisting matrix~3.11! is
taken. Particularly (v0 ,0) is represented by

U~v0 ,0! f ~x0 ,x!5e2p iv0f ~x0 ,x!. ~7.42!

Hence the representationU induces an isomorphism of~7.31! and ~7.32! by

U~f~s!!5e2p is. ~7.43!

Moreover, if we put

U0~ t !ªU~g0~ t !!, U1ªU~g1!, U2ªU~g2!, ~7.44!

they satisfy

U0~s!U0~ t !5U0~s1t !, ~7.45!

U0~1!5ep iz0, ~7.46!

~U1!n15ep iz1, ~7.47!

~U2!n25ep iz2, ~7.48!

U1U2U1
21U2

215e2p ig, ~7.49!

sinceU is a homomorphism of the relations~7.33!–~7.37!.
An irreducible representation ofU0(t) is labeled by an integerq0 and defined by

U0~ t !uq0&5e2p i (q01 ~1/2! z0)tuq0&. ~7.50!
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On the other hand, to construct a representation of the algebra generated byU1 and U2 , we
introduce a set of orthogonal vectors$uq1 ,q2&uq1PZ/n1Z,q2PZ/n2Z%. We assume identification
uq1 ,q2&5uq11k1n1 ,q21k2n2& for any k1 ,k2PZ. Let the operatorsU1 andU2 act on them by

U1uq1 ,q2&5e2p i (q11 ~1/2! z1)/n1uq1 ,q2&, ~7.51!

U2uq1 ,q2&5e2p i (q21 ~1/2! z2)/n2uq11n1g,q2&. ~7.52!

The step ofq1 generated byU2 is

Dq1ªn1g5dp1

,

d
5p1,. ~7.53!

Then the fundamental relations,~7.47!–~7.49!, are satisfied as

~U1!n1uq1 ,q2&5e2p i (q11 ~1/2! z1)uq1 ,q2&5e2p i ~1/2! z1uq1 ,q2&, ~7.54!

~U2!n2uq1 ,q2&5e2p i (q21 ~1/2! z2)uq11n1n2g,q2&

5e2p i ~1/2! z2uq1 ,q2& ~becausen2g is an integer!, ~7.55!

U1U2U1
21U2

21uq1 ,q2&5U1U2U1
21e22p i (q21 ~1/2! z2)/n2uq12n1g,q2&

5U1U2e22p i (q12n1g1 ~1/2! z1)/n1e22p i (q21 ~1/2! z2)/n2uq12n1g,q2&

5U1 e22p i (q12n1g1 ~1/2! z1)/n1uq1 ,q2&5e2p iguq1 ,q2&. ~7.56!

Thus the basis$uq1 ,q2&% spans a representation space of the algebra generated byU1 and U2 .
This representation space is reducible generally. We can see that the action ofU2 is cyclic.
Namely, if we put

cª
LCM$Dq1 ,n1%

Dq1
5

LCM$p1,,p1d%

p1,
5

LCM $,,d%

,
5

d

GCD$,,d%
, ~7.57!

then

cDq15LCM$Dq1 ,n1% ~7.58!

is an integral multiple ofn1 and therefore theU2 action ~7.52! iterated byc times gives

~U2!cuq1 ,q2&5e2p i (q21 ~1/2! z2)c/n2uq11cDq1 ,q2&5e2p i (q21 ~1/2! z2)c/n2uq1 ,q2&. ~7.59!

Moreover,

n1

c
5

n1GCD$,,d%

d
5

dp1GCD$,,d%

d
5p1GCD$,,d%, ~7.60!

n2

c
5

n2GCD$,,d%

d
5

dp2GCD$,,d%

d
5p2GCD$,,d% ~7.61!

are integers. Therefore, each choice ofq1PZ modulo (n1 /c)Z and q2PZ modulo (n2 /c)Z
specifies one of inequivalent irreducible representations. Consequently, the dimension of the irre-
ducible representation is

dimension5c5
d

GCD$d,,%
. ~7.62!
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On the other hand, the number of inequivalent representations for a fixedq0 is

#inequivalent irreducible representations5
n1

c
•

n2

c
5p1p2~GCD$d,,%!2. ~7.63!

These numbers give a number

~dimension!23~#inequivalent irreducible representations!5c23
n1n2

c2 5n1n2 , ~7.64!

which coincides with the dimension of the algebra generated byU1 andU2 , as required by the
Peter–Weyl theory on group representation.29 Thus we have obtained the complete set of irreduc-
ible representations of the algebra.

In summary, an irreducible representation of the MTG in the three-dimensional torus is speci-
fied by

x5~q0 ,@q1#,@q2# !PZ3Z(n1 /c)3Z(n2 /c) . ~7.65!

Using the decomposition~7.26! we have

U~s,te01n1e11n2e2!uq0 ,q1 ,q2&

5e2p i (s2X)U0~ t !~U1!n1~U2!n2uq0 ,q1 ,q2&

5e2p i $(s2X)1(q01 ~1/2! z0)t1(q11gn1n21 ~1/2! z1)n1 /n11(q21 ~1/2! z2)n2 /n2%uq0 ,q11gn1n2 ,q2&

~7.66!

with X evaluated as

X5 1
2 ~ te01n1e11n2e2!v~ te01n1e11n2e2!1 1

2 gn1n2 . ~7.67!

B. Examples in the three-dimensional torus

Here we apply the previous method of representation of the MTG to three examples of
magnetic fields inT3.

The first example is a magnetic field parallel to thex3-axis,

b5S b1

b2

b3

D 5S 0
0
n
D ~7.68!

with a positive integern. The generators~7.9! of the MTG are chosen as

e05S 0
0
1
D , e15

1

n S 1
0
0
D , e25

1

n S 0
1
0
D . ~7.69!

The vectors$e1 ,e2% reproduce the discrete magnetic shifts~2.17! in the plane perpendicular to the
magnetic field. The cycles~7.12! of e1 ande2 are found to be

n15n, n25n, ~7.70!

respectively. Using them we evaluate the parameters of the MTG as
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d5GCD$n1 ,n2%5GCD$n,n%5n, ~7.71!

g5e1~v2 tv!e25e1•~e23b! 5
1

n
, ~7.72!

,5dg5n
1

n
51, ~7.73!

z05z15z250. ~7.74!

The size and the number of irreducible representations are

dimension5c5
d

GCD$,,d%
5

n

GCD$1,n%
5

n

1
5n, ~7.75!

#inequivalent irreducible representations5
n1n2

c2 5
n2

n2 51. ~7.76!

In this case~7.51! and ~7.52! reproduce the representations~2.20! and ~2.21! in T2.
The second example is a magnetic field perpendicular to thex1-axis and lying in the middle

of the x2- andx3-axes,

b5S b1

b2

b3

D 5S 0
n
n
D , ~7.77!

with a positive integern. The generators of the MTG are chosen as

e05S 0
1
1
D , e15

1

n S 0
0
1
D , e25

1

n S 1
0
0
D . ~7.78!

The cycles ofe1 ande2 are

n15n, n25n, ~7.79!

and other parameters of the MTG are also evaluated as

d5n, g5
1

n
, ,51, z05z15z250, ~7.80!

dimension5c5n, ~7.81!

#inequivalent irreducible representations5
n1n2

c2 51. ~7.82!

The third example is a magnetic field in the direction of~1,1,1!,

b5S b1

b2

b3

D 5S n
n
n
D ~7.83!

with a positive integern. A calculation similar to the previous ones gives a series of parameters.
Here we show only the results
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e05S 1
1
1
D , e15

1

n S 1
0
0
D , e25

1

n S 0
1
0
D , ~7.84!

n15n, n25n, d5n, g5
1

n
, ,51, z05n, z15z250, ~7.85!

dimension5c5 n, ~7.86!

#inequivalent irreducible representations5
n1n2

c2 51. ~7.87!

VIII. REPRESENTATION THEORY OF THE MTG IN AN n-TORUS

Here we describe how to characterize the MTGs in ann-dimensional torus. We can choose
generators$e1 ,e2 ,...,el , f 1 , f 2 ,...,f l ,g1 ,g2 ,...,gm% (2l 1m5n) of the magnetic shift groupVn

such that

ei , f iPQn, ~v2 tv!ei ,~v2 tv! f iPZn, ei~v2 tv! f j5g id i j ~ i , j 51,...,l !, ~8.1!

gkPZn, ~v2 tv!gk50 ~k51,...,m!, ~8.2!

with nonzero rational numbersg iPQ. The vectors$g1 ,...,gm% are demanded to be minimal
integral vectors in the sense that there is no real numbers satisfying

0,s,1, sgkPZn, ~8.3!

for eachk51,...,m. Let $m i ,n i%( i 51,...,l ) be smallest positive integers such that

m iei ,n i f iPZn ~8.4!

and that there are no integers$mi ,ni% satisfying

0,mi,m i , mieiPZn, ~8.5!

0,ni,n i , ni f iPZn. ~8.6!

Equations~8.1! and ~8.4! imply that g im i andg in i are integers. Thus, by putting

diªGCD$m i ,n i%, ~8.7!

we can see thatg idi is an integer. Consequently, the group of translations~6.16! is decomposed as

Vn5Ze1%¯% Zel % Z f 1%¯% Z f l % Rg1%¯% Rgm ~8.8!

and the MTG~6.18! is expressed as

SA>S13v~Zm1
3¯3Zm l

3Zn1
3¯3Zn l

3Tm!. ~8.9!

Finally, we describe an outline of the representation theory of the MTG’s in ann-dimensional
torus. Let us define integersxi ,yi ,zj by

xiªm i
2eivei , ~8.10!

yiªn i
2f iv f i ~ i 51,...,l !, ~8.11!
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zkªgkvgk ~k51,...,m!. ~8.12!

Generators of the MTG~8.9! are represented by a set of unitary operators

T~s!ªU~s,0!, sPR, ~8.13!

UiªU~ 1
2 eivei ,ei !, ~8.14!

ViªU~ 1
2 f iv f i , f i !, ~8.15!

Wk~ t !ªU~ 1
2 t2gkvgk ,tgk!, tPR. ~8.16!

They satisfy the equations

T~s!T~ t !5T~s1t !, ~8.17!

T~1!51, ~8.18!

~Ui !
m i5T~xi /2!, ~8.19!

~Vi !
n i5T~yi /2!, ~8.20!

UiViUi
21Vi

215T~g i !, ~8.21!

Wk~s!Wk~ t !5Wk~s1t !, ~8.22!

Wk~1!5T~zk/2!, ~8.23!

and other trivial commutators. These equations for then-torus are generalization of the equations
~7.31!–~7.37! for the three-torus. A representation space is spanned by the basis vectors

ul,p,q,r &5ul,p1 ,p2 ,...,pl ,q1 ,q2 ,...,ql ,r 1 ,r 2 ,...,r m& ~8.24!

labeled bylPZ, piPZm i
, qiPZn i

, andr kPZ. The generators act on the basis vectors according
to

T~s!ul,p,q,r &5e2p ilsul,p,q,r &, ~8.25!

Ui ul,p,q,r &5ep il(2pi1xi )/m iul,p,q,r &, ~8.26!

Vi ul,p,q,r &5ep il(2qi1yi )/n iul,p1 ,...,pi1g im i ,...,pl ,q,r &, ~8.27!

Wk~ t !ul,p,q,r &5ep il(2r k1zk)tul,p,q,r &. ~8.28!

These are generalization of~7.43! and ~7.50!–~7.52!. The cycle ofVi is given by

ciª
LCM$g im i ,m i%

g im i
5

LCM$g idi ,di%

g idi
5

di

GCD$g idi ,di%
. ~8.29!

Hence an irreducible representation is labeled by

x5~l,@p1#,...,@pl #,@q1#,..,@ql #,r 1 ,...,r m!PZ3Z(m1 /c1)

3¯3Z(m l /cl )
3Z(n1 /c1)3¯3Z(n l /cl )

3Zm. ~8.30!
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The dimension of the irreducible representation is

dimension5)
i 51

l

ci , ~8.31!

and the number of inequivalent representations is

#inequivalent irreducible representations5)
i 51

l
m in i

ci
2 ~8.32!

for fixed (l,r 1 ,...,r m)PZm11.

IX. CONCLUSION

Let us summarize our discussions. We began this article with a discussion on symmetry of a
charged particle in a uniform magnetic field. We saw that the quantum system inT2 has a discrete
noncommutative translation symmetry. The symmetry is characterized by a central extension of a
cyclic group.

In the following part of this article we introduced a noncommutative product intoRn11. Using
the group structure, we defined the magnetic fiber bundlesPv

n11 , which is a fiber bundle overTn

with a fiberS1. Then we showed that the set of magnetic fiber bundles is classified by the quotient
space of integral matrices Mat(n,Z)/Sym(n,Z). We introduced connections into the fiber bundles
and classified them by Mat(n,Z)3Rn/Sym(n,Z)3Zn as shown in~5.5!. The lifted translations
leaving the connection invariant form the magnetic translation group of~6.4!. We characterized the
MTG by ~6.18! with ~6.16!. This characterization of the MTG is one of main results of this article.
We found that the magnetic shift groupVn is discrete when the characteristic matrix (v2 tv) is
nondegenerated.

In the rest of the article we discussed the representation theory of the MTG forT3 in detail
and applied it to a few examples. The dimensions of an irreducible unitary representation is given
by c in ~7.62! and each irreducible representation is labeled byx in ~7.65!. These results may be
useful for application to the electron system in a lattice in an inclined magnetic field. We briefly
described the representation theory of the MTG forTn and summarized the result in~8.30! and
~8.31!.

Here we would like to mention remaining problems. It is desirable to apply the representation
theory of the MTG to spectral analyses of the Laplace and Dirac operators. Originally the spectral
problem of the quantum mechanics in a torus motivated this study. For this application the
Peter–Weyl theory on group representation will play an essential role. In the next study we would
like to pursue the analysis of the Laplace operator in the torus with a magnetic field. Moreover, an
equilateral torus admits discrete transformations that exchange vertices of the torus and that leave
the metric and the magnetic field invariant. It is also desirable to include such discrete transfor-
mations into the MTG for the complete spectral analysis.

By developing the theory of the MTG we will find its applications to physics. Inclusion of the
supersymmetry into the MTG is an interesting direction for the future development. Sakamoto,
Tachibana, and Takenaga30,31 have pointed out that breaking of the translation symmetry causes
breaking of the supersymmetry because the supersymmetry includes the translation symmetry.
Hence the magnetic field may trigger supersymmetry breaking. On the other hand, the MTG in an
n-torus is regarded as a generalization of the noncommutative torus, which attracted much atten-
tion recently in the string theory.32 The B-field in a compactified space naturally induces a non-
commutative structure, which is described by the MTG. Jackiw33 also showed that how the
noncommutative structure emerges in physical situations. If we turn our attention to solid state
physics, we find another interesting application of the MTG also in this area. Tranquada34 ob-
served spontaneous formation of a charge density wave at a nonzero wave number in a copper-

5947J. Math. Phys., Vol. 43, No. 12, December 2002 Magnetic translation groups

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



oxide superconductor. This ordered state is called the stripe phase, in which the translation sym-
metry is broken. A similar stripe phase occurs commonly in a quantum Hall system.35 Application
of the MTG may help understanding of the stripe phases.

Note added in proof. After acceptance for publication of this article we obtained more strong
results on the magnetic translation group inn dimensions. As concernsg i in ~8.1! andm i , n i in
~8.4!, we proved thatm i5n i51/g i . Consequently, the definition~8.7! means simply that
di5n i . Eq. ~8.29! is also simplified asci5n i . In ~8.31! the dimension of the irreducible repre-
sentation becomes) i 51

l n i . Finally, the number of inequivalent reprenentations~8.32! is reduced to
one. As a corollary, we can show thatn15n25d5c51/g and hence,5dg51 in Sec. VII. More
strongly, we can prove thatn15GCD$b1,b2,b3% for the three-deimensional magnetic field. Proofs
of these statements are to be published elsewhere.
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