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JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 12 DECEMBER 2002

Magnetic translation groups in an  n-dimensional torus and
their representations

Shogo Tanimura®
Department of Engineering Physics and Mechanics, Kyoto University,
Kyoto 606-8501, Japan

(Received 7 May 2002; accepted 6 August 2002

A charged particle in a uniform magnetic field in a two-dimensional torus has a
discrete noncommutative translation symmetry instead of a continuous commuta-
tive translation symmetry. We study topology and symmetry of a particle in a
magnetic field in a torus of arbitrary dimensions. The magnetic translation group
(MTG) is defined as a group of translations that leave the gauge field invariant. We
show that the MTG in am-dimensional torus is isomorphic to a central extension
of a cyclic groupZ,, X---xZ, XT™by U(1) with 2|+ m=n. We construct and
classify irreducible unitary representations of the MTG in a three-torus and apply
the representation theory to three examples. We briefly describe a representation
theory for a generah-torus. The MTG in am-torus can be regarded as a gener-
alization of the so-called noncommutative torus.2002 American Institute of
Physics. [DOI: 10.1063/1.1513208

I. INTRODUCTION

Many people have been studying dynamics of an electrically charged particle in a magnetic
field for various interests. Landau found that the energy spectrum of an electron becomes discrete
when a magnetic field is applied, and explained the diamagnetic property of a metal. The quantum
Hall effect looked a peculiar phenomenon when it was first discovered but today it is understood
as a universal phenomenon observable in a two-dimensional electron system in a magnetic field.
Dynamics of charged particles in a magnetic field is still an active research area.

Here we examine a group-theoretical aspect of the quantum system in a magnetic field. In
particular we compare symmetry in a torus with symmetry in a Euclidean space. We would like to
understand how the symmetry structure of the dynamical system is affected by the topological
structure of the underlying space. It is known that the translation symmetry group becomes
noncommutative when a uniform magnetic field is introduced into the Euclidean space. Moreover,
the translation symmetry group becomes discrete when the underlying space is replaced by a torus.
In this article we consider a vector potential

n n

A:jél ijjkdxk+j21 C!jde (11)

over ann-dimensional toru§"=R"/Z". Herewj are arbitrary integers ang, are real numbers.
Then the corresponding magnetic field is given by the two-form

L1
BZdAzjélE(wjk_wkj)dxj[ldxk. (12)

We conclude that the magnetic translation groM@G) in T" is
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Sa=(RX ,Q"N/(ZX ,Z"), (1.3

whereQ" is a subgroup oR" defined byQ"={v € R"|(w—"'w)v € Z"} and the group operation in
Rx ,R" is defined by

n

(X0sX1s+-Xn) - (Yo, Y1s-+2Yn) = Xo“LYO*‘jé1 Xj0jkYk X1t Y1, XntYn |- (1.9

This characterization of the magnetic translation symmetry is one of the main results of this
article. The MTG is actually a central extension of a cyclic group

.o .o m =
Z, X XZ, XZ,, X XZ, XT (2l +m=n) (1.5

by S'=U(1). Webuild a complete set of irreducible representations of the MTG®inWe also
describe a method to build irreducible representations of the MTG'in

We would like to briefly review studies by other people on a quantum system in a magnetic
field. Brown found that the translation symmetry of an electron in a lattice in a uniform magnetic
field is noncommutative and that the quantum system obeys a projective representation of the
translation group. At the almost same tfvand late? Zak built a representation theory of the
lattice translation group in a magnetic field. Ashby and Mflleonsidered a space—time lattice of
a finite size in uniform electric and magnetic fields and proposed an electromagnetic translation
group. Avron, Herbst, and Simon have been studying spectral problems of thelidgeropera-
tors in a magnetic field in a series of pap&rsParticularly, in Ref. 6 they examined a system of
particles in a uniform magnetic field and characterized a constant of motion analogous to the total
momentum. Dubrovin and Novik6¥° studied the spectrum of the Pauli operator in a two-
dimensional lattice with a periodic magnetic field and intensively analyzed the gap structure above
the ground state. Asch, Over, and Séflelarified how the inequivalent Hamiltonians on a torus
in a magnetic field are induced from a Hamiltonian on the universal covering space of the torus.
In a series of studié&™ Lulek, Florek, Lipinski, and Walcerz established a systematic method to
construct central extensions of a finitely generated Abelian group. Their results are equivalent to
the MTGs in a lattice. Kuwabatd'®is studying relations between the trajectories of a classical
particle and the spectra of its quantized system and has obtained many results *Galsoer
examined quantization of a particle on a Riemannian manifold in a magnetic field from a view
point of geometric quantization.

As reviewed above, a lot of studies on dynamics and symmetry in a magnetic field have been
done. Although MTGs in a finite lattice and in an infinite lattice have been much investigated, the
MTG in a torus of arbitrary dimensions is not yet fully investigated. Motivated by a recent
study?*?2 on extra dimensions of the space—time, Sakaneotml 2>~2° are developing field theo-
retical models in which the translation symmetry of an extra circle is spontaneously broken by a
nontrivial boundary condition in the ext®l. Moreover, we are developing mod&$’ in which
the rotation symmetry of an extra two-sphere is spontaneously broken by a magnetic monopole in
the extraS?. So we would like to understand how a background gauge field in a compact space
influences symmetry structure of a quantum system. Hence we decide to investigate symmetry in
a magnetic field in a torus.

This article is organized as follows. In Sec. Il we shall examine how symmetry of a quantum
system in a magnetic field is changed when the underlying two-dimensional Euclidean space is
replaced by a two-dimensional torus. In Sec. Il we extend our discussion tedamensional
torus. We introduce a noncommutative group structure Rit6* and use it to construct a mag-
netic fiber bundle, which is a bundle ov&f with a fiberSt. In Sec. IV we classify topological
structures of the bundles. In Sec. V we define connections, which are generalizations of a vector
potential, and classify them. In Sec. VI we define a magnetic translation group as a group of lifted
translations that leave the connection invariant. In Sec. VII we build a representation theory of the
MTG for T2 and illustrate the theory by a few examples. In Sec. VIl we describe an outline of the
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representation theory of the MTG for a genefdl Section IX is devoted to conclusions and
discussions. To reach the main result quickly the reader may read only Secs. Ill, V, and VI.

II. SYMMETRIES IN A MAGNETIC FIELD

This section is devoted to exercises to get ideas about the problem. The reader may skip this
section and restart from Sec. Il without missing the main course of the article.

A. Euclidean space

Let us begin our discussion by examining symmetry of quantum mechanics of a particle in the
uniform magnetic field irR?. It is a well-known system and becomes a starting point to explore
further nontrivial systems.

A uniform magnetic fieldBdx(ldy=dA is derived from a vector potenti?d=Bx dy. The
Schralinger equation is

Hy=|— = —2—— ——iB 21// ——El// 2.1
l/l > X > y IBX (x,y) . ( . )
Then the operators
P —-i——B P —i— 2.2
x:=1 IX Y, y' T I 9)/ ( . )

commute withH. These generate unitary transformations

(Uy(@) ) (x.y)=e Pay(x,y) =By (x—a,y), 2.3

(Uy (b)) (x,y)=e""Py(x,y)=h(x,y—b). (2.4

It is to be noted thatJ,(a) is a combination of a translation in tixedirection by the lengtla and
a gauge transformation. It is also to be noted that the translation ix-dlrection and the one in
the y-direction do not commute but satisfy

Un(2)Uy(b)(Uy(a)) " H(Uy(b)) =g, (2.9

The momentum generates a continuous symmetry and enables us to separate the variables. For
example, if we put the eigenvalue Bf, ask, the wave function is factorized as

P(x,y)=eYp(x). (2.6)
Then the Schidinger equation(2.1) is rewritten as

2

Hy=e (x)=eE¢(x) (2.7)

2

+1kB2
ox T2k=Bx)

and is reduced to the equation of a harmonic oscillator. Hence the energy eigenvalues are given by

E=|Bl(n+3 (n=0,12,..) (2.9
and are called the Landau levels. Each eigenvalue is infinitely degenerated with respeet to
<k<oo,

B. Torus

Next we turn to a two-dimensional torus. The two-tofifsis defined as the quotient space
R?/Z?. Namely, the points ifR?,

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 43, No. 12, December 2002 Magnetic translation groups 5929

(X, y)~(x+1y)~(x,y+1), (2.9
are identified as a single point iF?. If we impose a pseudoperiodic condition

Px+1y)=eBYy(x,y),  P(x,y+1)=%(x,y), (2.10

on the wave function, the Schitimger equatior(2.1) is well defined oveiT?. In other words, on
the space of functions satisfying the pseudoperiodic condition, the opedflatsecomes self-
adjoint. To make the two conditions i2.10 compatible each other we need to have

Px+Ly+1) =P y(x,y+1)=ePe®y(x,y) = y(x+ 1y)=e®y(xy). (2.1D
Hence we should have®=1. Namely, in the magnetic field strength
B=2mwv, (2.12

v must be an integer. We callthe magnetic flux number of the torus.

The operator®, and Py in (2.2) commute withH defined in(2.1). However, when they act
on a wave function satisfying the pseudoperiodic condit@d0, they do not give back a func-
tion satisfying the pseudoperiodic condition but instead give

Py(x+1y)=€BY(P,+B)y(X,y), (2.13

Pop(x,y+1)=(Py—B)(X,y). (2.19

Hence, the actions of these operators are not closed in the space of pseudoperiodic functions. Thus
we get a lesson thalhe generator of infinitesimal translation does not exist in the torlmvever,

it is still possible to construct operators for finite translations. We let the finite translation operators
(2.3) and(2.4) act on a pseudoperiodic functi@d@.10, and examine whether the resultant func-

tions satisfy the pseudoperiodic condition. Using the flux quantizdfat?) we get

(U@ ) (x,y+1)=e®20* Dy(x—a,y+1)
— eiBaeiBaylﬂ(X— a'y)
=e*""3 (U (a)P)(x,Y), (2.19
(Uy(D) ) (x+1y)=(x+1y—b)
=ePU Dy (xy=b)
:e—iBbeiBy¢(X’y_b)
=e 2m"e®Y(Uy(b)¢)(x,y). (2.16

Therefore, the transformed wave functiob(a) ¢ andU,(b) ¢, satisfy the pseudoperiodic con-
dition (2.10 if and only if

va,vheZ. (2.17

Consequently, the lengths of shifssandb, are restricted to integral multiples ofilMoreover,
on a pseudoperiodic function the shifts by the unit length act as

(Ux(D) ) (x,y)=€BYih(x—L1y) = (X,y), (2.18

(Uy(D) ) (Xy) =X,y —1)=(X,y). (2.19
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HenceU,(1) andU,(1) are identity operators. Thus the operatdrg1/v) andU(1/v) generate
a cyclic groupZ ,=Z/vZ of the orderv. However, as seen i(2.5) their commutator produces a
nontrivial phase factor. Thus we conclude that the symmetry of the quantum system in the torus
magnetic field is described by a projective representation, ofZ,, .

The group of translations of the quantum system in the magnetic field is called a magnetic
translation grougabbreviated as MT{G A more precise definition of the MTG will be given in
Sec. VI. In the torus the MTG becomes discrete and finite. Its representation is constructed as
follows. Let{|0),|1),...,,¥—1)} be a basis of the representation space. Then we define the action
of the translation operators by

U(n,/v)|g)=e?"""|q), (2.20
Uy(ny/v)|a)=|g+ny,(mod v)), (2.21)

for n,,nye Z. We can easily verify that they satisfy
U(ny/2)Uy(ny /9)(Ux(ny /)" H(Uy(ny /) " Y gy =& CGmI0my gy - (2.22)

which is homomorphic to the commutat.5). This representation is irreducible and its dimen-
sion isv. Hence each energy eigenval{®8) is degenerated by folds.

C. Three-torus

Let us examine the case of a three-dimensional torus briefly to motivate further discussion.
With real constantst ,b,,bs) a vector potential

A:leZdX3+ b2X3dX1+ b3X1dX2 (223
gives rise to a magnetic field
B=dA= bldXZDdX3+ b2dX3DXm+ b3dX1DdX2. (224)

The Hamiltonian is then given by

2
+

2

J
__|b3X1 +

(9X2 l//(xl 1X21X3)- (225)

d " 2
— —1D+X
X3 1X2

Hy=— 1[(i—ibzx3
2\ dxq
On the three-torus the wave function must satisfy a set of conditions
P(Xq+ 1%, X3) = €032 (X1, X, X3),
P(X1, X+ LX) =€P1Y(X1, X2, X3), (2.26

P(X1, X, X3+ 1) =€P214h(X1 X5, X3),

which is a generalization of the the pseudoperiodic condit®h0 of the two-torus.

We would like to find a complete set of translation operators that commuteHviind are
compatible with the pseudoperiodic conditigh26). Of course, if the magnetic field is parallel to
one of the axes, the system is reduced to the two-torus as has been discussed®HyoZak.
example, if p;,b,,b3)=(0,0B), the Hamiltonian(2.25 and the conditio{2.26) are reduced to
(2.1) and(2.10, respectively. However, it is a highly nontrivial and not yet fully solved problem
to find a complete symmetry group for an inclined magnetic fiblg 1§, ,b3). Thus we decide to
develop a more systematic method to construct the translation symmetry group for a generic
magnetic field in then-torus.
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Ill. MAGNETIC FIBER BUNDLE

We shall extend the previous consideration on the two-dimensional torus to arbitrary dimen-
sions. What we will do in the rest of this article is to construgtl) principal fiber bundles over
an n-dimensional torug™", to classify the bundles, to introdut&(1) connections with constant
curvatures ovell", to define the MTG as the stability group of each connection, and to construct
the representations of the MTGs. Throughout this article we are identiffingith U(1).

Let us begin with construction o' principal fiber bundles ovef". For this purpose we
introduce a noncommutative group structure iRf6'! as follows. Take amx n matrix  which
consists of integersyj e Z (j,k=1,...n). The matrixw is not necessarily antisymmetric. Define
a product of €g,X1,....Xn), (Yo.Y1,---¥n) € R" 1 by

n

(Xo,Xl,...,Xn)~(yo,yl,...,yn):z X0+yo+j%l ijjkYkaX1+y1a---:Xn+yn . (31)

In the following we abbreviate the notation of the vectorsxag(x,,...,X,) € R". We write the
inner product of vectors ax;y=2?=lx]- yj and the bilinear form ame:Eh:ﬁj(ﬂjkYk- It is
easily verified that the s@"*? becomes a group with this product operation; the associativity is
satisfied as

((X0,X) - (Yo,¥))+(20,2) = (Xo+ Yot XwYy,X+Y)-(Z9,2)
=(Xgt+Yot+Zot+Xoy+ (X+Yy)wz,(X+Yy)+2)
=(Xgt+Yot+Zpt+Xoy+Xwz+Yywz,X+Yy+2)
=(Xp+Yot+tZpt+Xw(y+2)+ywz,Xx+(y+2))
=(X0.X) - ((Yo.Y)-(20,2)), (3.2
the unit element is given by (0,@)RXR", and the inverse element of{,x) e RXR" is given by
(Xp,X) " 1=(—Xo+ XwX, —X). (3.3

The setR""! equipped with this group structure is denotedy ,R". A commutator is calcu-
lated as

(X0.X) - (Y0.¥)* (X0.X) "1+ (Yo.,¥) 1= (Xo+ Yo+ Xoy,X+Y) (—Xo+XwX,=X) - (—Yo+Yywy,—Y)
=(YotXoy+XoX—(X+Yy)wXy) (—Yot+Yyoy,—Y)
=(XoY+XoX— (X+Y)wX+Yyoy—Yyoy,0)=(Xoy—YywX,0),

(3.9

and thereforeRx ,R" is Abelian if and only ifw is a symmetric matrix. The natural projection
mapR X ,R"—R" becomes a group homomorphism. As its kerRet ,{0} is contained in the
center ofRX ,R", the groupRXx ,R" is a central extension d&®" by R.

The subseZ X ,Z"={(mg,my,...,my)|my,m; e Z} is also a subgroup d®x ,R" but it is not
isomorphic to the standard Abelian grodf**. The subgrou x ,Z" acts freely onRx ,R"
from the left via the group operation. Hence the space of orbits

P Lo (ZX ,Z"\(RX ,RM (3.5

becomes a smooth manifold.

The group operation also induces action of the greup,R" on the space:Pg+l from the
right. The subgroupZ x ,{0}CRX ,{0} are contained in the center Bx ,R" and hence their
actions from the right are equivalent to those from the left. The subgr@ps{0} and Z
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X 4,10} are isomorphic tdR and Z, respectively. ThuR acts onPZ+1 but its subgrouZ acts
trivially on P""! sinceZ is contained in the dividing grouix ,Z" of the quotient spacé3.5).
Therefore the action dR is reduced to the effective action 8f=R/Z on P"*!. The space of
orbit PZ“/S1 is diffeomorphic to a toru§". Consequently we obtain a principal fiber bundle
with the canonical projection ma'pa,:PZ“—ﬁ” with a structure groufst. We call this fiber
bundle amagnetic fiber bundle twisted by the matax The procedure to construct the magnetic
fiber bundle is summarized by the following commutative diagram:

Zx 0} — Zx,Z" - zn

l ) !

RX,{0} — RX,R" — R" (3.6)
l l l
Sl _ P2)+1 _ -|—n

Tw

A function f:P?*1—C is identified with a functionf:Rx ,R"—C that is invariant under
action ofZx ,Z" from the left as

f(Mg+ X+ Mox,m+x)=1(xqg,X), (Mg,m)yezZx, Z". (3.7
Moreover, when the functiof: P""*— C satisfies
f(Xot+t,X)=e"27f(x,X), teR, (3.9
it is called an equivariant function dﬁgﬂ. Hence the equivariant functiohhas the property
f(Xg,x+m)=e2"MXf(x, x), meZ". (3.9
This is a generalization of the pseudoperiodic condit@r0),
PX+LY)=e*"VyY(xy),  P(Xy+1)=g(Xy). (3.10

In fact, if we take the matrix

_(0 v)
©=lg o (3.11

the general conditio3.9) of T" is reduced to the specific ori8.10 of T2.

IV. EQUIVALENT MAGNETIC BUNDLES

In the above construction each magnetic fiber bundle is specified by an integral matrix
However, it can happen that different matricesnd w’ give rise to equivalent fiber bundles. In
this section we prove thah andw’ induce equivalent fiber bundles if and only if the difference
o' — w is a symmetric integral matrix. Therefore, we may choose a representative mauigh
that wj =0 for j=k. Namely, the upper triangle matrix

0 wpp wiz ~° wipg Win
0 0 w3 ° wyp1 W2n
o=’ ? 0 = a1 em @.)
0O O 0 0 Wn_1p
0 O 0 0 0
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with integerswj can be taken as a standard form of the ma#ixrhe reader will not miss the
main result of the article even if he skips this section and restarts from Sec. V.

Here we introduce three kinds of isomorphisms that convert a bundle specified by a anatrix
to a bundle specified by another mateixX.

Let us introduce the first kind of bundle isomorphism. When a symmetric maiixintegral
elementsgj = oy € Z, satisfies

n

jél ij'jkmke 22 (42)

for any m=(my,...,m,) € Z", we call o an even symmetric matrix. This requirement foris
equivalent to demanding that the off-diagonal elemenjisare integers and that the diagonal
elementsy;; are even integers. Here we will show that two magnetic burelf¢s andP""* are

isomorphic each other for any even symmetric matrixFor this purpose let us define a map
¢,:RX R"-RX,,,R" by

o (X0,X) =(Xg+ 3XOX,X). (4.3

Existence of the inverse map is obvious; it is given @yl(xo,x)=(x0—%X(rx,x). It is easily
verified that the mapb,, is a group isomorphism as
Ho((X0:X) - u(Y0,Y)) = do(Xo+ Yot Xwy,X+Y)
=(Xo+ Yot Xwy+ 3(x+y)a(x+y),x+y)

=(Xo+ Yo+ $XoX+ 3yoy+x(w+o)y,x+Y)

=(Xo+ 2X0X,X)* 1 o(Yot 2YOY,Y)

:¢0(X01X)'w+o¢a(y0!y)l (44)

where we have distinguished the product operatioR ®f,,, ,R" from that ofRx ,R". The map
¢, sends the integer subgrodp< ,Z"to Zx . ,Z", sincec is even as required it%.2). There-
fore, ¢,, induces a diffeomorphism

(d)a')* (ZX wzn)\(RX an)H(ZX w+o‘zn)\(RX w+0'Rn)' (45)
Moreover, sincap,, is the identity map when it is restricted & {0},

(bg((t,O) ' w(XO ,X)) = ¢o—(tro) : w+o’¢o(XO !X) = (t,O) : w+o—¢o(X0 ,X), (46)

thus (¢,), is equivariant with respect to the action &t. It is also clear thatr,=7,,.,
°(¢4)« - Thus we conclude that the mag (), is an isomorphism between the principal fiber
bundlesP?** and P""? .

Next we shall introduce the second kind of bundle isomorphism. We identify a diagonal
matrix A=diagA;,A,,....A;) with a vectorA=(A1,A,,...,A)eZ". Then we define a map

¢A:RXan—>RXw+ARn by

1 1 1o
da(Xg,X):=| Xo+ ExAer EAx,x =| Xo+ 5]21 (XjAX+A%),X . 4.7

It is also easily verified thad, is a group isomorphism as
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da((X0:X) - w(Y0,Y)) = da(Xo+ Yot Xwy,X+Y)
=(Xo Yot Xwy+ z(X+y)A(X+y)+ zA(X+Y),X+Yy)
=(Xo+ Yot 3XAX+ FAX+ 3YAYy+ 3Ay+X(w+A)y,X+Y)
=(Xot 2XAX+ 3A%,X) 1 a(Yo+ 2YAY+ 3AY,Y)
= ha(X0,X)* w+2Pa(Yo,Y)- (4.8

Note that wher; is an integerx”+x;=x;(x;+ 1) is always an even integer and herjeg (x
+X;j) is an integer. Therefore the map, sends the integer subgroupx ,Z" to Zx, ,Z".
Moreover,¢, sendsRx {0} to RX . ,{0} identically. Thus the induced mag(), becomes an
isomorphism between the principal fiber bundRs * and P"" Y

There is the third kind of bundle isomorphism, which will be used when we classify connec-

tions later. For eaclh=(g1,&5,...,e5) € Z" we define a map, :RX ,R"—RX ,R" by

n

b (Xg,X) :=(Xg+ eX,X)=| Xo+ 21 £jXj X |. (4.9
=

It is also easily verified thad, is a group isomorphism as

$:((X0.X) u(Y0:Y)) = Pe(Xot Yot Xwy,X+Y)
=(XoT Yot Xwy+e(X+y),X+y)
=(XgtexX+Yyotey+Xwy,X+Yy)
= (X0t eX,X): o(YoT &Y,Y) = ¢s(X0,X) - ,&:(Yo,Y)- (4.10

The map¢, sends the integer subgrodp< ,Z" to Zx ,Z". Moreover,¢, sendsRx ,{0} to R
X 10} identically. Thus the group isomorphisd), induces an automorphismp(), of the prin-
cipal fiber bundleP""*.

As a summary, we write down a combined isomorphism of the three kinds of maps

(pohpod,)(Xg,X):=(Xg+ 3X(T+A)X+ FAX+eX,X). (4.11

By adding an integral diagonal matrixto an even symmetric matrix, we can make any integral
symmetric matrixa’ =o+A. Therefore, by combining the first and second kinds of isomor-
phisms,¢, and ¢, , we can establish an isomorphism betwéé‘ﬁl and P:)jfr for any integral

symmetric matrixa’. In other words, the set of magnetic fiber bundles has a one-to-one corre-
spondence with Mat(,Z)/Sym(n,Z), where the quotient is taken in the sense of additive groups.

V. CONNECTION

In this section we define the vector potentials that yield uniform magnetic fields in an
n-dimensional torus. We use the words, a vector potential, a gauge field, and a connection, to
describe the same notion. Magnetic field strength and curvature are an identical notion.

Let us define a differential one-ford on RXx ,R" by

n n

A=—dxot 2 Xjopdxct+ X a;dx=—dx+Xodx+ adx (5.1)
i k=1 =1

with a real vectora € R". These parameter@=(«4,...,a,) characterize the Aharonov—Bohm
effect. The action of ifiy,m) e Zx ,Z" from the left of RX ,R" defines a mapp: (Xy,X)— (Mg
+Xo+ MwX,m+x). Note that the one-form is invariant under the transformation lgyas
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©* A= — (dXo+ MadX) +(M+x)wdx+ adx=A. (5.2)

ThusA can be regarded as a one-form Iéij“:(waZ”)\(Rwa”). It is also obvious tha#
is invariant under a transformatiomd,x)— (xo+t,x) for anyte R. Moreover,A satisfies

(9 —
aoh =1 (5.3

by the definition. In the above equatidn, - ) denotes the pairing of a vector and a one-form. Thus
A satisfies the axiom of a connection form of the principal bungje P""*—T".

We can classify the connections using isomorphism maps introduced in the last section. The
connectionA, , defined by(5.1) is parametrized by an integral matrixe Mat(n,Z) and a real
vector e R". For any even symmetric matrisr € EvenSym(,Z) and integral vectors\,e
eZ", the combined isomorphisifd.11) induces a transformation

(De°Pr° Do)  Avtota,ar 112a+6
=—d(Xp+ 3X(o+A)X+ $AX+eX)+X(w+o+A)dX+ (a+ FA+e)dx
=—dxy—X(o+A)dx— sAdx—edx+x(w+o+A)dx+ (a+ $A+e)dx
= —dXy+ Xwdx+ adx
=A,a (5.9

via pullback. Thus the connections are classified by the equivalence relation
(w,@)~(w+o+A,a+ A+e), oecEvenSynin,Z);A,eeZ" (5.5

among ,«) € Mat(n,Z) X R".
Next we define a covariant derivative of the equivariant funcfidsy

Df:=df—2miAf. (5.6

Of course, on the right-hand sidies —1. The curvature fornf is defined by

n n
F:=dA= . E wikde Dka: . E El(wjk_ wkj)de Ddxk , (57)
ik=1 jk=1
which gives a constant magnetic field. Hence the first Chern class is uniquely specified by the
integral antisymmetrized matrix(— ‘). It is knowrf® that anS!-fiber bundle has a one-to-one
correspondence with the first Chern class. Therefore, by choasinlglat(n,Z) appropriately, we
can construct any principal fiber bundles oWérwith the fiberSt.

VI. MAGNETIC TRANSLATION GROUP

Now we shall examine translation symmetry of the vector poteAtiaf the uniform magnetic
field. In this section we shall give a precise definition of the MTE Thand express the MTG in
a more concrete form. We will prove that the MTG is

Sp=(RX ,QM/(ZX ,Z"), (6.1)
where)" is a subgroup oR" defined by()"={v € R"|(w—"'w)v € Z"} and the group operation is

taken in the sense @B.1). This is one of the main results of this article.
We begin by defining the MTG. A vectare R" generates a translation @f' by
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7, T"—=T",  X—>x+v. (6.2

When a mapr, :P""*— P"*! satisfies the commutative diagram

Sl
/ N\
PZ+1 i P2)+1
(6.3
ol Ly
™ - ™

the mapr, is called a lift of the translatiom, . The lifted translations that leave the connectfon
invariant form a group

Swi={7, (LI PL o e RN w7, = 1oy HA=AL. 6.4

We call it the stability group ofA, or the magnetic translation grodpITG).
Let us write down the lifted translation in a more explicit form. We ugg,X) eR"*! as a
coordinate ofP”**. Sincew, %, = 7,07, , the lift 7, of (6.2) must have the form

T, 1 (X, X)—=>(Xo+ 0(Xg,X,v),X+v). (6.5
To make7, commutative with the action a#®™"oe St the functiond must satisfy
Xot+ Wo+ 0(Xg+Wq,X,v)=Xg+ 6(Xg,X,0) + Wy, (6.6)
namely, § must satisfy
O(Xg+Wq,X,v) = 60(Xg,X,v) (6.7

for any wpe R. Therefore, the functiom is independent ok,. To become a map dfP[],”, the
map7, must send an orbit of the left-action &fx ,Z" to an orbit of the same group. In other
words, for any (ny,m) e ZX ,Z" there must exist an elemennf,m’) e Zx ,Z" that satisfies

?v((m01m)'(XO!X)):(mévm,)'?U(XOIX)' (68)
The above equation is rewritten as
(My+Xg+MwXx+ O(M+X,v),m+Xx+v)=(Mi+ X+ O(X,v) + M w(X+v),m +x+v),

which is equivalent to a set of equations

m=m’, (6.9
Mo+ MwX+ 6(M+Xx,v)=m+ 6(Xx,v)+m' w(x+v). (6.10

The last equation implies that
O(Mm+X,v)— 6(X,v) —Mwv=myg—mye Z (6.11)

for any me Z". In reverse order, any functioéi(x,v) satisfying the conditior(6.11) defines a
lifted translatiorir, by (6.5). The lifted translatioft, is actually a combination of a spatial shift by
v with a gauge transformation b§ Hence, we finish characterizing the lifted translations.

Let the lifted translatiof¥, act on the connection fori of (5.1) via pull-back. Then it gives
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Ty A= —(dXp+d )+ (X+v)wd(x+v)+ad(X+v)=A—df+vwdx. (6.12

Hence, to leave the connection invariantZsA=A, the functiond must satisfy a differential
equationd #=v wdx. Thus we have

0(X,v)=vwx+uvg (6.13

with a constantvye R. To make7r, a map ofP’;”, the function® must satisfy the condition
(6.11), which requires that

O(m+x,v)— 6(X,v) —Mov=vem—Mmewv=—mM(o—'w)veZ (6.14
for anyme Z". Therefore, the vectar e R" is required to satisfy
(0—'w)vezn. (6.15
We call the vectow satisfying(6.15 a magnetic shift. A set of the magnetic shifts is denoted by
Q"={v eR"(w—"w)veZ. (6.1

The setQ" becomes an additive subgroup Rf. When the antisymmetrized matrixo ') is
nondegenerated)" is discrete. The lifted translatiéf, defined by(6.5 with (6.13 becomes

T, 1 (X, X)—=>(Xg+ 0(Xg,X,0),X+v)=(XgtvwX+vg,X+0v)=(vq,0) (Xg,X), (6.17

and therefore the action &f, is identified with the action ofi(y,v) e RX ,Q" on Pﬂfl from the
left. However, the subgroupx ,Z"CRx Q" acts onP" " trivially. Thus the stability grougs,
of the connectiorA is identified as

Sa=(RX ,OM/(ZX ,Z"). (6.18

This is one of the main results of this article. Note t&atis a central extension of a compact
Abelian groupQ"/Z" by S'=R/Z.

Actually, there is another way to characterize the gr8up The groupRXx ,Q" is a normal-
izer of N=2x _,Z" in G=RX ,R". In other words, the subgrouyp defined by

H:={he G|VneN,hnh e N} (6.19

coincides withRx ,Q". The above statement is easily proved as follows. A straightforward
calculation yields

(Xg,X) - (Mg, M) - (Xg,X) 1= (My+X(w—"w)m,m). (6.20

Therefore the necessary and sufficient condition fg,X) e RXx ,R" to bring the above element
into N=2Zx ,Z" is that (w—'w)x e Z", or thatxe Q". ThusN=2Zx ,Z" is a normal subgroup of
H=RX Q" and hence the quotient groga=H/N is well defined.

VIl. REPRESENTATIONS OF THE MTG IN A THREE-TORUS

A unitary representation theory of the MTG is significant for spectral analyses of the Laplace
operator and the Dirac operator in a background gauge field. In this section we examine a three-
dimensional torus and construct a complete set of representations. This is another main result of
this article. In the next section we will discuss an outline of the representation theory of the MTG
for arbitrary dimensions.
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A. Method

The MTG was identified aS,= (RX ,Q")/(Z% ,Z") at(6.18. We would like to express the
MTG in terms of generators and relations. Here we concentrate on the three-dimensional torus. Let
us take the matrix

0 by —b,
w=[0 0 by (7.
0

with positive integerd,, b,, andb;. Then antisymmetrization ab yields

0 b; —by
w—'w=| —bg O b, |. (7.2
b, —-b; O
The characteristic equation obs ') is
dei A — (0—'®))=N(\2+b2+b3+b3). (7.3
Hence, its eigenvalues are
A=0,~iB (7.4

with B:= \/b21+ b22+ b32. We assume tha@# 0. The eigenspace for=0 is spanned by
by
b=| by |. (7.5
bs

The action of p—'w) on a vectow e R is equivalent to the vector produck (- 'w)v=v Xb.
The magnetic shift grougs.16 now becomes

Q3*={veR¥(w—"'w)veZ?. (7.6)

The linear subspad@b spanned by of (7.5) is a subgroup of)%.Let us define a generateg by

DO::GCD{bl,bQ,bg}, (77)
1 (P
eo:z— b2 . (78)
Do b
3

Here the GCD is an abbreviation of the greatest common divisor while the LCM is an abbreviation
of the least common multiple. It is obvious thetis in Z2 and that (o —'w)ey,=0. The vectore,

is a minimal integral vector in the sense that there is no real nusiseich that 6<s<1 and

se e Z3. There exist other vectoss;, e,, Q® that generat€)® as

O%=Rey®Ze @ Ze,. (7.9
HereQ is the whole set of rational numbers. Frdim6) these generatoms; ande, must satisfy

(w—'w)e;,(w—'w)e, e Z3. (7.10
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These vector$e; ,e,} are minimal magnetic shifts in the sense that there is no real nusrtieth
that

0<s<1, s(w—'w)eeZ? (7.11)
for eachi=1,2. Moreover, there are positive integersand v, such that
Vlel,Vzeze ZS. (713

We demand that the integefs;,v,} are the smallest cycles in the sense that there is no integer
m such that

0<m<v;, meeZ? (7.13

for eachi=1,2. Consequently, the decompositigh9) yields

and
O3Z73=(RIZ)®(ZIviZ)®(ZIv,2Z). (7.14
Thus an arbitrary element of Sy=(Rx ,0%)/(Z% ,Z°%) is parametrized as
g=(s,teg+nse,+nye,), s,teR/Z;nieZlviZ,n,elZlv,Z. (7.15

Let us examine the commutat@8.4). It is clear that the elements(0) commutes with any
element. Sinced—'w)e,=0, the element (Bg,) also commutes with any element. On the other
hand, (0g;) and (Og,) produce a nonvanishing commutator

(0,1)-(02)-(0,1) *-(02) " *=(7,0 (7.16
with
yi=e(w—'w)e,=e;-(e,XDb). (7.17
From (7.10 and(7.12 we can see that

vy, voyeZ. (7.18

Hencev is a rational number. Led be the greatest common divisor of andv,. If we put v,
=dp, andv,=dp,, thenp,; andp, are mutually prime. The above equatithl8 implies that
dv is an integer. So we have
d:=GCD{vq,vy}, {:=dyeZ. (7.19
Before constructing the representation of the MTG, we need to know how the generators

generate an arbitrary element of the MTG. From the multiplication rule of the groupR" we
deduce that fox,y e R"

(3X0X,X)- (3Y0Y,Y)=(3X0X+ 3yoy+Xoy,x+Yy)
=(zxwy— zyox+ z(xty)o(x+y),x+y)
=(zX(0—"'0)y,0)- (3(X+y)o(x+y),x+y) (7.20
and

(2xwx,x) "1=(3xwx,—X). (7.21)

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



5940 J. Math. Phys., Vol. 43, No. 12, December 2002 Shogo Tanimura

Iteration of (7.20 yields
(3xwx,X)"=(3n’xwx,nx), neZ. (7.22
Furthermore(7.20 implies
12xwx,sX) - (3t°xwx,tx) = (% (s+1t)?xwx,(s+1)x), s,teR. (7.23
By a tedious calculation we can show
(sx+y+2)=(s=X,0)- (3XwX,X)- (zywY,y) - (320Z,2) (7.24
with
X=3(x+y+2)o(x+y+2)+ sx(0—'w)y+ ix(0—'0)z+ 3y(0—'w)z. (7.25
Thus an arbitrary element of the MTG is expressed as
g=(s,teg+n,e;+nyey)
=(s— 3(teg+nie;+n,e) w(tey+n,€,+N285) — 3 yN1N,,0)
-(3t%eoweg,tey) - (F€10e;,81)"- (38,0€5,8,)"™
= ¢(s=X)-go(t)-(91)"(92)", (7.2

which is a product of the generators

#(s):=(s,0), (7.27)
go(t) =(3t%eoweq, tey), (7.28
gi:=(5€,0€1,€y), (7.29
02:=(3€,0€;,8,). (7.30
These generators satisfy the relations
#(s)- p(1)=(s+1), (7.31)
$(1)=1, (7.32
9o(S) - go(t) =go(st1), (7.33
9o(1) = ¢(520), (7.34
(91)"1=¢(321), (7.39
(92)"2=¢(32,), (7.36
910201 0z = ¢(¥) (7.37

and other trivial commutators. Here we have defifiegdz,,z,} by
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1 2
Zozzeoweo:(D_o) b1b2b3, (73&

Z,:= V56,081, 2= Vo8, 0€,. (7.39

Becauseg, is an integral vector ana is an integral matrixz, is an integer. Furthermor€7.12
implies thatz, andz, are also integers.

In reverse order, the generatdré(s),go(t),9,,9,} and their relationg7.31)—(7.37 deter-
mine the MTG uniquely. These generators with the relations form the MTG in a constructive
manner. Consequently, the MTG iR is completely characterized by the set of parameters
(z9,21,22,v1,v2,7), Where{zy,z,,2,,v4,v,} are integers ang is a rational number constrained
by the condition(7.18.

Now we discuss the representation theory of the MTG exhaustively. The space of functions
{f:R"*1.C} provides the regular representation of the gré&p ,R" via

U(Uo,U)f(Xo,X) ::f((UOJ))_l’(Xva))
=f((—votvwv,—v)-(Xg,X))

=f(Xg—votTvwv —VvWX,X—V). (7.40

We restrict the representatidsh on the space of equivariant functions, which are constrained by
(3.7) and(3.8). Then we have

U(vg,0)f(Xo,x) =@ omvertveX)f(x, x—y), (7.41

which reproduces the unitary transformatig@s3) and (2.4) when the twisting matrix3.11) is
taken. Particularly €,,0) is represented by

U(vg,0)f(Xg,X)=e?""v0f(xy,X). (7.42

Hence the representatidh induces an isomorphism ¢7.31) and(7.32 by

U(¢(s))=e’"". (7.43

Moreover, if we put
Uo(t):=U(go(t)), U1=U(g1), Uz=U(gy), (7.49

they satisfy

Uo(S)Ug(t)=Uq(s+1), (7.45
Ug(1)=e™, (7.46
(Up)1=em2, (7.47
(Uyp)2=em22, (7.48
U,U,U U, t=e?m7, (7.49

sinceU is a homomorphism of the relatiolig.33—(7.37.
An irreducible representation &f,(t) is labeled by an integey, and defined by

Uo(t)|go) =™ (o™ (12 20)t| g, (7.50
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On the other hand, to construct a representation of the algebra generatéd dyd U,, we
introduce a set of orthogonal vectdts|,,q,)|q, € Z/v1Z,q, € Z/v,Z}. We assume identification
|01,92) =91+ Ky v1,92+ ko) for anyk, ,k,e Z. Let the operatoré); andU, act on them by

Uilqq,qp)=e?m (@t W2 20lmjq, qy), (7.5
U,lay,qp)=e?m (92" (WA 2)v2|q, + 1, y,q,). (7.52

The step ofg, generated by, is

€
Aq1::V1y=dp16=p1€. (7.53

Then the fundamental relationd,.47)—(7.49, are satisfied as
(U 1) V1| ql !q2> = eZﬂTi(q;ﬁr (12 Zl)lql 1q2> = eZWi (112 Zl|ql 1q2>1 (754)
(U2)"2|qy,qp)=e?™ (%" 12 2| + 11 1,,0,)
=e?™(122|q,,q,) (becausev,y is an integer, (7.55
U;UoU MU, Y ar,02) = U UpU; te 27t (2202 q) — 1y y,q,)
— U1U2e72ﬂ'i(q17v1y+ (1/2) Zl)/vlefzfri(q2+ (1/2) Zz)/V2|q1— V17;q2>
=U, e 2™yt W2 z)hn|q, q,)=e"?|q,,qy). (7.56

Thus the basig|q;,q,)} spans a representation space of the algebra generateld and U, .
This representation space is reducible generally. We can see that the actiby isfcyclic.
Namely, if we put

LCM{Aq;,v;} LCM{p,€,p,d} LCM{€,d} d 75
=T Aq, Pl ~T ¢ T GeDit.d (7.57)
then
CAq]_:LCM{Aql,Vl} (75&

is an integral multiple of; and therefore th&, action(7.52) iterated byc times gives
(UZ)Clql ,Q2> — e27-ri(q2+ (1/2) ZZ)C/V2|q1+ CAql ,Q2> — e27-ri(q2+ (1/2) ZZ)C/V2|q1 ,q2>. (7.59)
Moreover,

Vq VlGCD{e,d} . dp]_GCD{e,d} _

—= 5 5 =p,GCD{¢,d}, (7.60

Vo _ V2GCD{€,d} _ d szCD{f,d} _

= 5 5 =p,GCD{¢,d} (7.61

are integers. Therefore, each choiceqfe Z modulo (v,/c)Z and g,eZ modulo (v,/c)Z
specifies one of inequivalent irreducible representations. Consequently, the dimension of the irre-
ducible representation is

. , d
dimension=c= m (7.62
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On the other hand, the number of inequivalent representations for adjxed

14 14
#inequivalent irreducible representati@nsc—l- ?2=p1p2(GCD{d,€})2. (7.63

These numbers give a number

1204
(dimension?X (#inequivalent irreducible representatia)ﬁszzx%:vlvz, (7.64

which coincides with the dimension of the algebra generatetd pandU,, as required by the
Peter—Weyl theory on group representatidithus we have obtained the complete set of irreduc-
ible representations of the algebra.

In summary, an irreducible representation of the MTG in the three-dimensional torus is speci-
fied by

x=(do.[a1].[A2]) € ZXZ(, 10y X Z(,,1c) - (7.69
Using the decompositiof7.26) we have

U(s,teg+Nn;€1+n2€5)[00,91,02)

=e?mM XY (1)(U1)"(U2) "2 dg, 01, 02)
— e27ri{(sfx)+(qo+ (1/2) zg)t+(qq+ yrono+ (1/2) z)nq lvy+(ap+ (1/2) 22)n2/V2}|q0 ,Q1+ yvin, ,q2>

(7.66

with X evaluated as
X=3(tep+n,e;+n,e) w(teg+nie;+nye,)+ 3ynn,. (7.67

B. Examples in the three-dimensional torus

Here we apply the previous method of representation of the MTG to three examples of
magnetic fields i3,
The first example is a magnetic field parallel to sheaxis,

b,\ [0
b=|by|=|0 (7.69
b3 14

with a positive integew. The generators7.9) of the MTG are chosen as

0 1 0
1 1
e=1|( 0], er=- 0], &= 1 (7.69
1 0 0

The vectore; ,e,} reproduce the discrete magnetic shi?sl?) in the plane perpendicular to the
magnetic field. The cycle§.12 of e; ande, are found to be

Vi=V, V=V, (7.70

respectively. Using them we evaluate the parameters of the MTG as
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d=GCD{v,v,}=GCD{v,v}=v, (7.7
1
y=el(a)—tw)62=el-(ez><b)=;, (772'
1
(=dy=v-=1, (7.73
ZOZZ:L:ZZ:O. (774)

The size and the number of irreducible representations are

d v v

dimension=c= GCD(r.d] ~ GCD[is] 1" (7.79
2
. . . . L] v
#inequivalent irreducible representatleﬂscT =2= 1. (7.7

In this case(7.51) and(7.52) reproduce the representatiof®s20 and(2.21) in T?.
The second example is a magnetic field perpendicular txtkaxis and lying in the middle
of the x,- andxz-axes,

by 0
b=|b2|=| v[, (7.77
b3 14

with a positive integew. The generators of the MTG are chosen as

0 1 0 1 1
e=|1|, e=—(0|, e,=—|0]. (7.78
1 Y1 "\o
The cycles ofe; ande, are
V1=V, V=V, (7.79

and other parameters of the MTG are also evaluated as

1
d=v, y=—, {=1,2=2,=2,=0, (7.80
dimension=c=v, (7.8
. . . . . vy
#inequivalent irreducible representatleﬂs?—= 1. (7.82

The third example is a magnetic field in the direction(bfl,l),

bl 14
b=|by|=|7» (7.83
b3 14

with a positive integew. A calculation similar to the previous ones gives a series of parameters.
Here we show only the results
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1 1 1 1 0
eO_ 1 ’ el__ 0 ’ e2:_ 1 ’ (784)

1 Y\ o "\o

1
vi=v, vo=v, d=v, Y= €=1,2p=v,2,=2,=0, (7.89
dimension=c= v, (7.86
. . . . . v

#inequivalent irreducible representanensgr: 1. (7.87

VIIl. REPRESENTATION THEORY OF THE MTG IN AN n-TORUS

Here we describe how to characterize the MTGs imatimensional torus. We can choose
generatorde,,e;,....&,f1,f2,...,f1,01,92,....9m} (21 +m=n) of the magnetic shift group)”
such that

ei,fieQ”, (w—tw)ei,(w—tw)fiezn, ei(w—tw)fj=7i5ij (i,jzl,...,l), (81)
geZ", (0—'w)gy=0 (k=1,...m), (8.2

with nonzero rational numbers; € Q. The vectors{g,,...,.gm} are demanded to be minimal
integral vectors in the sense that there is no real numalsatisfying

0<s<1, sgeZ", (8.3
for eachk=1,...m. Let{u;,»;}(i=1,...]) be smallest positive integers such that
wig ,vif,eZ" (8.4
and that there are no integens; ,n;} satisfying
o<m<wu;, meeZ", (8.5
o<n<wy;, nfiez" (8.6
Equations(8.1) and(8.4) imply that y,u; and y;v; are integers. Thus, by putting
di:==GCD{w; ,vi}, (8.7)
we can see thay;d; is an integer. Consequently, the group of translati@%6) is decomposed as
O"=Ze & ---0ZedZf,®---dZf®Rg;® - ®RYy, (8.9
and the MTG(6.18) is expressed as
SA=S'X ((Z X+ XZ XZ,, XX Z, XTM). (8.9

Finally, we describe an outline of the representation theory of the MTG’s im-@imensional
torus. Let us define integess,y; ,z; by

X ==,uizeiwei y (81@

yi=vfiof, (i=1,..)), (8.1
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Z,:=0xwJyg (k:].,...,m). (813

Generators of the MT@8.9) are represented by a set of unitary operators

T(s):==U(s,0), seR, (8.13
Ui=U(3ewe &), (8.14
Vi=U(5fiof; . f), (8.1

W (1) :=U(3t°gwgy,tg), teR. (8.16
They satisfy the equations
T(s)T(t)=T(s+1), (8.17
T(1)=1, (8.18
(UDHi=T(x/2), (8.19
(V)"i=T(yi/2), (8.20
U ViUV E=T(y), (8.21)
Wi (S)Wi(1) =W(s+1), (8.22
Wi(1)=T(z/2), (8.23

and other trivial commutators. These equations forrtierus are generalization of the equations
(7.3)—(7.37 for the three-torus. A representation space is spanned by the basis vectors

INP.G) =N P1 P2 PO G2 T T 1 2 T ) (8.24
labeled by e Z, p; e Z,,%€Z,, andr, e Z. The generators act on the basis vectors according
to

T(s)IN.p.q.r)=e*"I\,p,q.r), (829
Ui[\,p,q,r)=em™EPki|\ p,q,r), (8.26
ViIN,p,q,r)y=e™ aydlviN p, i yimi .. PO, (8.27
WD, p.q,ry=e™ AN p.g,r). (828

These are generalization ¢f.43 and(7.50—(7.52. The cycle ofV; is given by

A__LCM{%M it _ LCM{y;d;.d;} _ d; (8.29
' Yiki vidi GCD{y;d;,di} " '
Hence an irreducible representation is labeled by
X:()\i[pl]i"'1[p|]v[ql]v"1[q|]vrlv"'1rm) EZ><Z(,U.1lcl)
X X Z 1o)X Loy 1) X X Z (g 16) X Z™ (8.30
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The dimension of the irreducible representation is

|
dimensior=[] ¢;, (8.31)
=1

and the number of inequivalent representations is

|
-
#inequivalent irreducible representatien 't'z' (8.32
=1 i

for fixed (\,rq,...,ry) eZ™,

IX. CONCLUSION

Let us summarize our discussions. We began this article with a discussion on symmetry of a
charged particle in a uniform magnetic field. We saw that the quantum syst&frhias a discrete
noncommutative translation symmetry. The symmetry is characterized by a central extension of a
cyclic group.

In the following part of this article we introduced a noncommutative productRfto'. Using
the group structure, we defined the magnetic fiber buriJgs, which is a fiber bundle oveF"
with a fiberSt. Then we showed that the set of magnetic fiber bundles is classified by the quotient
space of integral matrices MatZ)/Sym(n,Z). We introduced connections into the fiber bundles
and classified them by Mat(Z) X R"/Sym(n,Z) X Z" as shown in(5.5). The lifted translations
leaving the connection invariant form the magnetic translation grop.4f. We characterized the
MTG by (6.18 with (6.16). This characterization of the MTG is one of main results of this article.
We found that the magnetic shift growp” is discrete when the characteristic matrix+ ') is
nondegenerated.

In the rest of the article we discussed the representation theory of the MTG' fior detail
and applied it to a few examples. The dimensions of an irreducible unitary representation is given
by c in (7.62 and each irreducible representation is labeledy/ly (7.65. These results may be
useful for application to the electron system in a lattice in an inclined magnetic field. We briefly
described the representation theory of the MTG T8rand summarized the result {8.30 and
(8.3D.

Here we would like to mention remaining problems. It is desirable to apply the representation
theory of the MTG to spectral analyses of the Laplace and Dirac operators. Originally the spectral
problem of the quantum mechanics in a torus motivated this study. For this application the
Peter—Weyl theory on group representation will play an essential role. In the next study we would
like to pursue the analysis of the Laplace operator in the torus with a magnetic field. Moreover, an
equilateral torus admits discrete transformations that exchange vertices of the torus and that leave
the metric and the magnetic field invariant. It is also desirable to include such discrete transfor-
mations into the MTG for the complete spectral analysis.

By developing the theory of the MTG we will find its applications to physics. Inclusion of the
supersymmetry into the MTG is an interesting direction for the future development. Sakamoto,
Tachibana, and Takenatj&! have pointed out that breaking of the translation symmetry causes
breaking of the supersymmetry because the supersymmetry includes the translation symmetry.
Hence the magnetic field may trigger supersymmetry breaking. On the other hand, the MTG in an
n-torus is regarded as a generalization of the noncommutative torus, which attracted much atten-
tion recently in the string theor?. The B-field in a compactified space naturally induces a non-
commutative structure, which is described by the MTG. Jatkialso showed that how the
noncommutative structure emerges in physical situations. If we turn our attention to solid state
physics, we find another interesting application of the MTG also in this area. Tranfjudda
served spontaneous formation of a charge density wave at a nonzero wave number in a copper-
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oxide superconductor. This ordered state is called the stripe phase, in which the translation sym-
metry is broken. A similar stripe phase occurs commonly in a quantum Hall sySipplication
of the MTG may help understanding of the stripe phases.

Note added in proofAfter acceptance for publication of this article we obtained more strong
results on the magnetic translation groupnilimensions. As concerng in (8.1) and u;, v; in
(8.4, we proved thatu;=v;=1/y;. Consequently, the definitioi8.7) means simply that
di=v,. Eq. (8.29 is also simplified ag;=v;. In (8.31) the dimension of the irreducible repre-
sentation become&!:lvi. Finally, the number of inequivalent reprenentatié®82) is reduced to
one. As a corollary, we can show that=v,=d=c=1/y and henc& =dy=1 in Sec. VII. More
strongly, we can prove that; = GCD{b,,b,,bs} for the three-deimensional magnetic field. Proofs
of these statements are to be published elsewhere.
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