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Abstract

We explore the consequences of cwatset isomorphism (there are
a finite number of non-isomorphic cwatsets of each order) and con-
sider parallels between the theory of groups and the theory of cwat-
sets (cwatsets of prime order are cyclic but direct sums of isomorphic
cwatsets aren’t necessarily isomorphic).
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1 Introduction

Definition 1 A subset, C, of Z} is a cwatset if for each element, ¢, of C,
there exists a permutation, o, of S, such that C +c¢ = C°.

Rose-Hulman students, Rose-Hulman NSF-REU participants, and Gary
Sherman have developed the theory of cwatsets over the past ten years to
include a basic understanding of cwatset structure and a complete listing of
cwatsets up to degree seven ([1][4][5][7]). Our work, recorded in this technical
report, continues this project. In particular we explore the consequences of
cwatset isomorphism (there are a finite number of non-isomorphic cwatsets
of each order)while searching for parallels between the theory of groups and
the theory of cwatsets (cwatsets of prime order are cyclic but direct sums of
isomorphic cwatsets aren’t necessarily isomorphic).



2 Morphisms and Isomorphisms

2.1 Definitions

Recall that any cwatset is the natural projection of a subgroup of S, 1Z, into
z; ([7))-

Definition 2 The Omega group, Qc, of a cwatset, C, is the group of all
(0,b) € Sp1Zy such that C +b = C°.

Definition 3 For any binary word b, b; is the i** component of b. |
Definition 4 Autc = {(0,0)|(c,0) € Qc}

Definition 5 An element (o,b) € S, 1Z, is associated with the binary word
b.

Definition 6 A fiber in a quotient group is associated with a binary word,
b, if and only if all of the elements of the fiber are associated with b.

Definition 7 We will say that a group homomorphism respects a mapping,
[, of cwatsets if it maps elements associated with b to elements associated
with f(b).

Lemma 1 If ¢ respects f and v respects h, then 1 o ¢ respects ho f.

Proof: Let g be an element in the domain of @, associated with the binary
word b. Then ¢(g) is associated with f(b). Therefore, 1)(¢(g)) is associated
with h(f(b)). Thus, by definition, 1 o ¢ respects ho f. O

In order to study isomorphisms of cwatsets, we first provide a definition
of a morphism of cwatsets. The following definition was proposed by Daniel
Biss [2].

Definition 8 A map, f, between two cwatsets, C and D is a morphism if
and only if there exists a group homomorphism ¢ : Qc — Qp that respects f.

Definition 9 A bijective map, f, between two cwatsets is an isomorphism
if and only if both f and f~' are morphisms



2.2 An Equivalent Condition

Theorem 1 (Biss[2]) C = D if and only if there exists a group isomor-
phism U : Qc/Ic — Qp/Ip and a bijection f : C — D such that ¥ respects
f.

Theorem 1 was first proved in the context of category theory. Our proof
will be made without the use of category theory.

Definition 10 The isotropy group, Ic, of a cwatset, C, is the set of all
(0,0) € Q¢ such that b’ =b forallb e C.

Lemma 2 I¢ is a normal subgroup of Q¢.

Proof: To see that I is closed, consider (a,0),(5,0) € I¢. For allb € C,
b*# = bP since (@, 0) € I and therefore b® = b since (8,0) € Ic. This
implies, (a8,0) € Ic. Hence I < Q¢.

Next we show that I¢ is normal in ¢. Consider (o, 0) € I¢ and (o,b) €
Qc. Then (671, b )(e,0)(0,b) = (6~'ao, b’ '2°). Since b°" € C, We
know that (b ') = b° . Therefore, b '@ = b° ' = b. This implies,
(671,b°")(e, 0)(o,b) = (6710w, 0) € I¢. Thus, I¢ I Q¢. O

Lemma 3 N < Q¢ and N < Autc = N < I¢.

Proof: Consider an element (§,0) € N. Since N, (a,b)(6,0)(c~1,b""") €
Q¢ for all (o,b) € N. Therefore, (66c~1,b% " + b° ') € Autc since
N < Aute. This implies

b +b) " =0=>b’+b=0=b'=D.

Thus, N < Io. O.

It is often useful to think of a cwatset as a matrix where the rows of the
matrix are the elements of the cwatsets. When we speak of the columns of a
cwatset we are actually referring to the columns of the associated matrix. We
now prove that a cwatset’s isotropy group is non-trivial only if the cwatset
has repeated columns.

Lemma 4 Let (o, 0) € Ic where i* = j. Then the i** and j%* columns of C
are identical.



Proof: Since («,0) € I¢,b* = b for each b € C. Therefore, b; = b; for each
b € C; i.e., the i and j* columns of C are identical. O

It follows that the elements in a cwatset’s isotropy group simply move
columns within a block of identical columns.

Definition 11 Let M be the matriz associated with the cwatset C' and parti-
tion the columns of M into mazimal subsets of identical columns. Denote the
7™ column in the i component of this partition by M;; denote the number
of columns in the i component by |M;|.

Definition 12 Let Pc = {(n,d) € Qc|for every i, j there exits an | such that M =
My}

Lemma 5 P is a subgroup of Qc¢.

Proof: Clearly (id, 0) € P¢. To see that Pg is closed, consider (o, b), (7,d) €
Pc and an arbitrary column, M;;, of C. Since (0,b) € P, there exists an [
such that M7 = M,;. Since (7, d) € Pg, there exists a k such that Mj; = M.
Thus, there exists a k such that MJ™ = My;. Hence, (om,b™ + d) € Q¢ and
therefore P < Q¢. O

We will now show that if a permutation in a cwatset’s Omega group
moves a column from component i to a column of component k then the
permutation must move every column of component i to some column of
component k.

Lemma 6 If (0,b) € Q¢ and M = My, then for each y < |My| there ezists
an z < |M;| such that Mg, = M,,.

Proof: C +b = C", since (o,b) € Q¢. By assumption, M = My. Since all
of the M, columns are identical and all of the entries in b corresponding to M;
columns are identical, all of the M; columns in C” must be identical. Thus,
every M, in M is the image under o of something identical to M;;. But by
definition the only columns identical to M;; are M;, for some z. From this it
follows that for each y < | M| there exists an z < |M;| such that M7, = M,,.
|

Corollary 1 If (0,b) € Q¢ and M = My, then |M;| = |M)|.



Proof: Note that the z's guaranteed by the previous lemma are distinct
since o induces an injective mapping from the columns of C to the columns
of C"r Thus, |M;| > |M,|. However, (0,b) € Q¢ = (671,b°"") € Q¢. Since

= M;; then by the previous lemma, |M;| < |M;|. Hence, |M;| = M.
D

Lemma 4 states that any permutation associated with an element of the
isotropy group only moves columns within sets of identical columns. We will
now show the converse to be true.

Lemma 7 If for every i and j there exrists k such that M = M, then
(a 0) € Ilc.

Proof: Since oo moves columns within sets of identical columns, then b® = b
for each b € C. It remains only to show that (,0) € Q¢. To do this we
must demonstrate that C*+0 = C; i.e., for each x € C there exists ay € C
such that x* = y. But this is true for x = y. Thus, (,0) € I¢. O

We are now in a position to prove that every cwatset’s Omega group is
isomorphic to a semidirect product of P and I.

Lemma 8 For each (0,b) € Q¢ there ezists (r,d) € P and (o,0) € I
such that (o,b) = (7, d)(e, 0).

Proof: Consider (o,b) € Q¢. For each column M;; of C, there exists [ and
k such that M = M. From Lemma 6, we know 7 can be chosen such that
M M¢, We choose a such that 7a = o. This implies M = My, so by
the previous lemma, (a, 0) € Q¢. By assumption, (o,b) € Qc Since Q¢ is
closed, (, b) € Qc¢. Since (7,b) € Q¢ and M7 = My; for all ¢ and j, then
(7!' b) € Pc. O

Theorem 2 For every cwatset, C, Q¢ i3 isomorphic to a semidirect product
Of PC and Ic.

Proof: From the previous lemma, Q¢ = Pglc. Additionally, PoNle = (id, 0)
and Ic is normal in 2¢. Therefore, Q¢ is isomorphic to a semi-direct product
of P and Io. O

Corollary 2 For any cwatset, C, there ezists a homomorphism from Q¢
to Qc/Ic and an isomorphism from Qc/Ic to Py such that both mappings
respect the identity bijection.



Proof: Let ¢ be the natural homomorphism from Q¢ to Q¢/Ic and con-
sider (o,b) € Q¢. Since ¢ is the natural projection, (o,b) € ¢(o,b). Con-
sider an arbitrary (m,d) € ¢(o,b). Then by definition of a fiber in Q¢/Ic,
(r,d)(e™,b°"") € I;. Therefore,

A +b7 =0 (d+b)  =0=>b=d

Hence, all of the elements of ¢(o, b) are associated with the binary word, b.
Thus, ¢ respects the identity bijection.

Now let ¢ be the mapping ¢ with domain restricted to Po. We know
that ¢ respects the identity bijection because ¢ respects the identity bijec-
tion. Consider (m,d), (p,x) € Pc such that ¢(m,d) = ¢(p,x). This implies
that (m,d)(p,x)™! € Ic. But P is closed, thus (r,d)(p,x)~! € Pc. There-
fore, (m,d)(p,x)"! € Poc U Ig. Thus, (m,d)(p,x)~! = (id,0), which implies
(m,d) = (p,x). Therefore, ( is injective which implies ¢ is an isomorphism.
(]

We know present a proof of Theorem 1. Proof: First we will show that
the existence of ¥ and f imply that C & D. Let ¢ be the natural projection
from Q¢ to Q¢/Ic and let ¢' be the natural projection from Qp to Qp/Ip.
Similarly, let { be the isomorphism from Pc to Q¢/Ic and (' be the iso-
morphism from Pp to Qp/Ip. Note that ¥ respects f and ¢, ¢/, (, (" each
respect the identity bijection (as per the previous corollary). By Lemma 1,
#¥(’ is a group homomorphism from Q¢ to Qp that respects f and ¢'¥~1¢
is a group homomorphism from Qp to Q¢ that respects f~!. Hence, f is an
isomorphism of cwatsets, i.e., C & D.

Next, we must show that C = D implies the existence of ¥ and f. Since,
C = D, there exists a morphism of cwatsets, h : C — D, and an associ-
ated group homomorphism, ® : Q¢ — Qp. We know that Q¢ /ker(®) =
Im(®) < Qp. Since ® respects a bijection between C and D, ker(®) < Autc
which implies ker(®) < Ic. By the third isomorphism theorem for groups,
Ic/ ker(®) < Q¢ / ker(®) and %{% = Qc¢/Ic. Additionally, since Qp is a
semidirect product there exists a natural projection from Qp to Pp. Since
Im(®) < Qp, then there exists a natural projection, T from Im(®) to some
Np < Pp. Note that this implies that there does not exist a non-trivial
K < Np such that K < Autp. Similarily, there does not exist a non-trivial
K < 517"%(5()@_) such that K < Im(Autp), because there is no non-trivial

K Q2 Q¢/Ic such that K < Im(Autc). Thus, ker(Y) = I¢/ ker(®), because
if this were not true then either E”ﬁ—gz% < Autp or I—Gk%iﬁ < Im(Autp).
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Thus,
Im(®)

IC / ker(<I>)
A similar argument will show that there exists a group homomorphism,
@' associated with f~! and a group, Ng, such that:
Im(®")
Ip/ ker(®)

Qc/lc = & Np<Pp

Qp/Ip & & Ne < FPe

Therefore we have that:
Qc/lc ® Np < Pp=Qp/Ip 2 N < Pc 2 Q¢/lIc

Hence, {dc/Ic = Qp/Ip. Since P respects h and both T and ¢’ respect
the identity bijection, then the group isomorphism ¥ = ®Y(' respects the
bijection f = h, as desired. O

The previous thereom can be restated in terms of the subgroup P of Q.
Corollary 3 C = D if and only if there ezists a group isomorphism ¥ :
Pc — Pp and a bijection f : C — D such that ¥ respects f.

Proof: The corollary follows from the fact that there exists an isororphism

from Q¢/Ic to Pc and from Qp/Ip to Pc both of which respect the identity
bijection. O

Since this definition of isomorphism relies heavily on the notion of respect-
ing a bijection, it will help to have another necessary and sufficient condition
for a homomorphism to respect a bijection.

Theorem 3 Let ¢ be a group homomorphism from Q¢ to Qp. Then there
ezists a bijection f, between C and D, such that ¢ respects f if, and only if,
for each (0,0) € Autc there ezists a (w,0) € Autp such that ¢(c,0) = (r,0).

Proof: Choose a representative, (p(x),x), of each coset of Auts. Now de-
fine f such that ¢(p(x),x) = (p(x)’, f(x)) for each x. Note that any element
(,%) € Qc can be written uniquely as (0, x) = (op(x)~!, 0)(p(x), x). There-
fore,

¢(0,x) = ¢(op(x)7,0)8(p(x), %)
(m, 0)(p(x)', £ (x))

= (mp(x)’, f(x))

Thus, ¢ maps every element associated with x to an element associated with
f(x). Hence, ¢ respects f. O



2.3 Invariants Under Isomorphism

Clearly, the order of a cwatset is invariant under isomorphism.

Definition 13 A spanning group of a cwatset, C, is a subgroup, G, of Q¢
such that the natural projection of G into Z% is ezactly C.

Definition 14 A cwatset is cyclic if it has a cyclic spanning group.
This definition of cyclic cwatset is equivalent to the one presented in [7].
Theorem 4 Cyclicity is invariant under isomorphism.

Proof: Let C be a cyclic cwatset. Let D be a cwatset such that C 22 D. Since
C is cyclic there exists a G < Q¢ such that G is cyclic and G spans C. Since
C = D, there exists a bijective morphism, f, and a group homomorphism,
¢ such that ¢ respects f. Consider, H = G®. For all x € C, there exists a
6 such that (6,x) € Q¢. Therefore, since ¢ respects f, for every f(x) € D,
there exists a m such that (7, f(x)) € Qp. Thus, by definition, H spans D.
Since G is cyclic, there exists a (o, b) such that (o, b) generates G. Therefore
#(o,b) generates H and so H is cyclic, which implies D is cyclic. O

Several interesting properties are not invariant under isomorphism. For
instance, a cwatset which is a group can be isomorphic to cwatset which isn’t

a group.

0000 000

1100110 _
=1010%101=P

1001 011

In the above example,
QcQc/lc=S5,%2Qp/Ip =Qp

Additionally, the isomorphism which maps ((1, 2,3, 4),1100) to ((1, 3),110))
and maps ((1,2),1100) to ((1,2),110) is an isomorphism that maps Autc to
Autp. Hence the two cwatsets are isomorphic even though D is group and
C is not.

Definition 15 The weight of a vector, b € Z3, is the number of ones in the
vector and is denoted w(b).

10



Definition 16 A cwatset of order n is perfect if there exists a positive integer
k such that every column of the cwatset has either weight k or weight n — k.
We call k and n — k the column pairings of C, denoted [k,n — k.

Perfection is not preserved under isomorphism.

00 000O0O0OU
C=01%101001=P
11 100111
In the above example,
Qc 2 Oc/lc =Dy =Qp/Ip = Qp

Additionally, the isomorphism which maps ((1, 2), 0000) to ((2, 3)(5, 6), 000000)
and maps ((1,2),10) to ((1,2,3,4)(5,6),110010)) is an isomorphism that
maps Autc to Autp. Hence the two cwatsets are isomorphic even though C
is perfect and D is not.

2.4 A Bound on Degree

Definition 17 The multiplicity of a column of a cwatset is the number of
copies of the column in the cwatset.

Note that the degree of a cwatset is the sum of the multiplicities of its
columns.

Definition 18 Two columns are said to interact if there is a permutation in
the Omega group of the cwatset that moves one to the other.

Lemma 9 If two columns in an order n cwatset interact, then
1. they have the same multiplicity.

2. If one’s weight is k then the other column’s weight is either k or n— k.
Proof: The first proposition follows immediately from Corollary 1.

To prove the second proposition, consider (o,b) € Q¢. Let Mg =
Mim with the weight of M;; being k. M, must have the same weight as

11



My, + ba,,,)- Thus, if b(ag, ) = 0 then My, and M;; have the same weight.
Otherwise if b(ay, ) = 1 then:

n-— w(Mlk) =k= w(Mlk) =n-—k

O

Definition 19 The concatenation of two binary words, c o d is the binary
word that contains the components of ¢ followed by the components of d.

Observation: Consider the binary word cod. If o = aff where « acts on
the columns 1,...,deg(c) and 3 acts on the columns deg(c)+1,...,deg(c) +
deg(d), then (cod)® = c* o d?.

Definition 20 The concatenation of two cwatsets of the same cardinality,
denoted C o D, is the set containing all words C; o D; for i < |C| = |D|.

Theorem 5 Let C be a cwatset and B be a set of columns within C such
that no column in B interacts with a column not in B. Let D be a cwatset
constructed by concatenating C with m copies of B. If in D no column in B
interacts with a column not in B, C = D.

Proof: Let f be the obvious bijection between C and D. It is sufficient to
show that Pg = Pp by a bijection that respects f.

Let (0,b) € Pg. Since no orbit in o can contain an element in B and an
element not in B, then ¢ can be written as a product of cycles that fix each
element of B and cycles that move columns within B. Thus we can uniquely
decompose 0 = w4 where § fixes the columns in B. Let 7’ be a permutation
constructed from 7 by for every cycle, (Mgj, My;, ... M), in 7, appending
the Cycles (Maj+1, Mbj+1, e Mcj+1) oo (Maj+m, Mbj+m; “e Mcj+m)-

Let o' = 7’6 and let ¥ : (o,b) — (o’, f(b)). Then by construction,
(o', f(b)) € Pp and V¥ respects f. Since 7’ uniquely defines 7, ¥ is injective.
Since (0,b) € Pg, (mm) = w\n) and f(x°) = f(x)” forallx € C, ¥ is
a group homomorphism. Since the columns in B do not interact with any
columns in D not in B, then Pp can contain no elements not in Im(¥). Thus,
¥ is surjective, which implies ¥ is a group isomorphism. Hence, C = D. O

Lemma 10 An order n cwatset has at most 2" distinct columns.

12



Proof: Every cwatset contains the all zero word. Therefore each column is a
binary word of word of length n in which the first component is zero. There
are 2" ! distinct words of this form. Therefore a cwatset has at most 27!
distinct column. O ‘

Theorem 6 Every isomorphism class of cwatsets has a representative of
degree at most 2°2(2"1 +1).

Proof: First note that the upper bound given in the theorem is the sum,
s

Suppose C is a cwatset of order n, with degree greater than 2"~2(2"~14-1).
Since there are only 2"~! possible distinct columns in an rder n cwatset,
then C must have a column of multiplicity ¥ > 2"~!. Additionally there
must be an integer, 7, between 1 and 2"~! such that there is no column with
multiplicity j. By Lemma 6, the set of all columns with multiplicity k¥ form
a set which does not interact with the rest of the cwatset. Construct a new
cwatset, D, from C such that every column which has multiplicity k& in C
has multiplicity j in D. Since C has no columns of multiplicity j, this set of
columns will not interact with any other columns in D. Thus, by Theorem
5, C = D and since j < k, the degree of D is strictly less than the degree of
C. O

2.5 Group Action Representations

By definition, (o, b) is in a cwatset’s Omega group if and only if C° = C +b.
Then for all x € C there exists a y € C such that x* + b = y. Therefore,
we can think of (o,b) as acting on C by sending x to y, and we write
o) =27 L b=y.

Lemma 11 Let(o,b) € Q¢ andx € C. Then the action (o,b) : x — 27 +b
18 a group action.

Proof: Let g = (o,b) and h = (m,d). Then gh = (om,b™ + d) implies
2% = z°" + b" + d. And 29 = x? + b implies (x9)* = (x* + b)* + d. Thus,
x9h = (x9)*.

Clearly, x* 4+ 0 = x + 0 = x. Thus, x99 = x for all x. O

Lemma 12 The group action (0,b) : x — x° + b is transitive.

13



Proof: For every x € C, there exists a (0,x) € Q¢. Note that 0(9%) = x for
all x € C. Therefore, (¢,x) maps 0 to x and so 0 and x are in the same orbit.
Thus there is only one orbit under the action; i.e, the action is transitive. O

Lemma 13 The kernel of the group action (o,b) : x = x? +b is I¢.

Proof: Consider an element (c,0) € Ic. Then x®% = x® 4+ 0 = x for all
x € C. Therefore, (a, 0) is in the kernel of the group action.

Consider an element (o, b) in the kernel of the group action. Then x° +
b = x for all x € C. Specifically, 0° +b = 0 which implies b = 0. Therefore,
x’ =x for all x € C and so (0,0) € Ic. O

Let us denote the permutation representation of the group action (o, b) :
z — 2%+ b by Rg < 5,,. Note that this representation is dependent upon
an ordering of the words within the cwatset.

Definition 21 The i** word in the cwatset, C, is denoted by C;. By con-
vention, C, = 0.

Lemma 14 Rg = Q¢/lc =2 Pe.

Proof: Since, ¢ : Q¢ — Qc¢/Ic is a homomorphism with kernel Iz and
¥ : Q¢ — Rc is a homomorphism with kernel I, the first isomorphism
theorem for groups implies that Rg = Q¢/Ic & Pe. O

Note that the elements of P are in distinct cosets of I, the kernel of the
group action. Therefore, the representation of Q¢ as R¢ induces a natural
isomorphism from P¢ to Rc.

This representation provides another necessary and sufficient condition
for two cwatsets to be isomorphic.

Theorem 7 C = D if and only if Rc and Rp are conjugate in S, by an
element that fizes 1.

Definition 22 Let § € R; such that 1° = i. Then 6 is associated with the
it word in C.

Recall that a group homomorphism respects a bijection f if, and only if,
it maps elements associated with b to elements associated with f(b).

14



Lemma 15 The natural isomorphism from Pc to Ro respects the identity
bijection.

Proof: Let v be the natural isomorphism from P to Rc. Consider an element
(0,C;) € Pg. (0,C;) is associated with C;. Additionally, 0%C) = 0° + C; =
C;, which implies 1) = 4, Thus, v(c, C;) is also associated with C and
80 v respects the identity bijection. O

Theorem 8 If ® : Rc — Rp respects a bijection f : C — D, then there
erists a ¥ : Pc — Pp and a bijection h: C — D such that ¥ respects h.

Proof: Since ® is a group homorphism, ® maps the identity of R¢ to the
identity of Rp. Since for any cwatset id € U is associated with Oand since
f is respected by ®, f(0) = 0. Therefore, ® must map elements associated
with O to elements associated with 0. Let T : P — R¢ be the isomorphsim
from Lemma 15. Then T®Y~! will be a homorophism from P; to Pp that
maps elements associated with 0 to elements associated with 0. Therefore
by Theorem 3, there exists an h such that T®Y ! respects h. O

Corollary 4 C = D if, and only if, there exists an isomorphism ¥ : Rc —
Rp and a bijection f such that U respects f.

Proof: This follows in a straightforward manner from Theorem 8 and Theo-
rem 1 (I

We now present a proof of Theorem 7. Proof: 8 € R is associated with
Cye and ¢(0) is associated with D,4e). Therefore, ¢ respects f if, and only
if, for all @ € R, f(C1) = Dses).

However, a bijection between cwatsets can be represented as an element
of Sp. Define the permutation, f* such that f*(i) = j if, and only if, f(C;) =
D;. Therefore, ¢ respects f if, and only if, for all § € R¢, 1°" = 1#(), Thus,
a group homomorphism, ¢, respects a bijection, f, if, and only if, 6f* and
¢(0) have the same action on 1. This means that 8f* and ¢(f) are in the
same coset of the stabilizer of 1. Therefore, there exists an A* in the stabilizer
of 1 such that ¢(8) = h*4f*.

But, ¢ is a homomorphism and therefore, ¢(id) = id implies that h* f* =
id. Therefore, h* = f*~!. Thus, ¢ must be conjugation by f* for some f* in
the stabilizer of 1. O
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Corollary 5 C = D if, and only if, Rc and Rp are conjugate in S,,.

Proof: Let C = D. Theorem 7 implies that Rc and Rp are conjugate by an
element in S, that fixes 1. Therefore, Rc and Rp are conjugate in S,.

Let B¢ and Rp be conjugate in S,, by some element «. Then, since R is
transitive, 1 and 1% are in the same orbit under Ro. Therefore there exists
a B € Rc such that 1*# = 1. So, af is an element of S, that fixes 1. Since
R is closed,

afRcfla™! = aRca™! = Rp.

Therefore, Rc and Rp are conjugate by o which fixes 1. So by Theorem 7,
C=D.0O

Note that conjugation of R by an element in S, is equivalent to a re-
ordering of the words in a cwatset. Thus the previous corollary establishes
a link between isomorphism and equivalence. Two cwatsets are equivalent if
there exists a reordering of the columns such that the cwatsets are identical.
Analogously, Two cwatsets are isomorphic if there exists a reordering of the
rows such that their permutation representations are identical.

2.6 Concatenation and Classification

This permutation representation is useful in classifying cwatsets because it
helps us to understand the concatenation of two cwatsets.

Theorem 9 Let A, B and C be cwatsets such that C = A¢ B with A and
B having mutually disjoint sets of column weights. Then Rc = R4 N Rg.

Proof: First we will show that R4 N Rg C Rc. If @ € R4 N Rp then there
exists an (o, a) € (4 such that A7 +a = A, and there exists a (8,b) € Q5
such that Bf + b = Byjs. Consider, (af',aob) where §' is § adjusted to act
on the columns deg(A) + 1,...,deg(A) + deg(B). Then

(A4;0B;)* +aob=A%0Bf +aob= (A% + a) o (BP) = Ay + By

Therefore, § € Rc = R4N R C Rc.

Next we will show that R4 N Rp 2 Rc. Since A and B have mutually
disjoint sets of column weights, then there are no “crossover” permutations.
. le., all permutations in {2 can be decomposed into a8’ where a acts on the
columns 1...deg(A) and §' acts on the columns deg(A) + 1,...,deg(4) +
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deg(B). Assume § € Rc. Then there exists (o,a o b) € Q¢ such that
(A; o B;)° +aob = Ap o By. But, 0 can be decomposed as 0 = af'.
Therefore,

A2 o B? = Ay o By = (A% +a) o (B? +b) = Ay o By

Hence, A? + a = Ay and BY + b = By. This implies § € R4 and 6 € Rp.
Thus, 8 € R4NRg andso R4NRg D Rc. O

Definition 23 A perfect cwat-multiset is a multiset in which every element
of a perfect cwatset is duplicated the same number of times.

Definition 24 The Omega group, Q2p, of a perfect cwat-multiset, P, is the
group of all (o,b) € S, 1 Zy such that P+b = P, :

Additionally, let us denote the permutation representation of the group
action (0,b) € Qp:z — 1°+b by Rp < S,.

Definition 25 Let P be a perfect cwat-multiset constructed with k copies of
each word from the cwatset C. Then Rp is the set of all @ € S, for which
there ezists (0, b) € Q¢ such that P? +b = Py for each P; € P.

Note that with this definition, if k = 1, Rp = R¢ and if k > 1, |Rp| >
|Rc| because Py = Pix doesn’t imply § = &

Corollary 6 If C = P o () where P and @ are perfect cwat-multisets with
mutually disjoint sets of column weights, then Rc = Rp N Ry.

Proof: Since the proof of Theorem 9 never used the fact that each C;
was unique within C, an identical argument would work with perfect cwat-
multisets. O

Kerr{4] showed that every cwatset is the concatenation of perfect cwat-
multisets. Therefore, we now have a method to categorize all cwatsets of a
given order. First we can categorize all non-equivalent perfect cwat-multisets.
Then we can use the previous theorem to classify the concatenations of these
perfect cwat-multisets. An example of this methodology follows in Appendix
C where we classify all cwatsets of order less than or equal to five. First,
however, we present another theorem which will help in this classification.
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Definition 26 A perfect multiset of order n is complete if each of the ( n -k— 1 )

weight k columns and each of the ( Z:IIC ) weight (n — k) columns are

present with multiplicity 1.

Lemma 16 Let C be a complete perfect multiset for some k and let D be a
complete perfect multiset for the same k. Then C is equivalent to D.

Proof: Since C and D are both complete for the same value of k then they
must contain exactly the same columns. Therefore there is a permutation
of columns that maps the columns in C to the columns in D. Thus C is
equivalent to D. O

Lemma 17 If C is a complete perfect multiset, then C is a cwat-multiset.

Proof: C is a cwat-multiset if, and only if, for all b € C there exists o € S,

such that C+b = C?. We know that C +b contains kil-l )+< nzk )

columns and that all of the columns of C +b are of weight k or weight n— k.
Additionally, C' has no repeated columns and one cannot change the number
of repeated columns by adding b to each word in the set. Therefore C' +b
has no repeated columns and so C + b is complete. Since C is complete for
some k and C + b is complete for the same k, Lemma 16 implies that C is
equivalent to C'+ b, which means there exists a ¢ € S, such that C+b = C°.
Hence, C is a cwat-multiset. O

Lemma 18 If C is a complete perfect cwat-multiset of order n, then Re =
Sh.

Proof: 8 is an element of R¢ corresponding to an element of Autc if, and only
if, the rearrangement of the rows of C' caused by # can be induced by some
permutation of the columns of C. Since C is complete, C? is also complete
for all 6 in the stabilizer of 1. Thus, by the previous lemma, C? is equivalent
to C. Hence, all 4 in the stabilizer of 1 are in Rc.

Since R¢ = P, |R¢| = |Pe|. C has a trivial isotropy subgroup, and so
|Pc| = |Qc¢|. However, |Q¢| = |Autc||C|. Thus, |R¢| = (n—1)!n. Therefore,
|Rc| = |Sy|, but Rg < S,.. Hence, Rg = S,,. O

18



Theorem 10 Concatenation of a complete perfect cwat-multiset which has
~ column weights k and n — k with a cwatset which has no k or n — k weight
columns does not change the isomorphism class of the cwatset.

Proof: Let C be a complete perfect cwat-multiset with columns of weight k
and n — k. Let D be a cwatset with no columns of weight k or n — k. It
suffices to show that C ¢ D = D.

Since C and D have mutually disjoint sets of column weights, Theorem 9,
implies that Rcop = Re N Rp. Since C is complete, we know that Rg = Sp,.
We also know that Rp < S,. Therefore, Rc.p = Sp, N Rp = Rp. Hence by
Theorem 7, Co D= D. O

Corollary 7 Concatenation of a cwatset with the all zero column doesn’t
change the isomorphism class of a cwatset.

Proof: Let C be a cwatset and let P be the all zero column. Note that P is
complete because there is only one column of weight zero and there are no
possible columns of weight n. It will sufice to show that PoC = C.

There are two cases to consider. The first is when C does not contain
the all zero column. In this case, the result we need is a straightforward
application of Theorem 10.

The second case is when C does contain the all zero column. Since No
permutation in {2¢ can move a column of weight zero to any column of non-
zero weight, the zero columns in C form a set which does not interact with
any other column in C. Thus, P ¢ C is just C with the multiplicity of every
column in this set increased by one. Therefore by Theorem 5, PoC = C. O

Note that Corolary 7 is equivalent to the statement that taking the direct
sum of a cwatset with the binary bit zero does not change the cwatset’s
isomorphism class.

Definition 27 The pyramid cwatset of order n is the complete perfect cwat-
set with k = 1.

Lemma 19 Let C be a cwatset of order n. Then each weight 1 column must
have the same multiplicity as the weight n — 1 column.
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Proof: Every cwatset must have the same number of one’s in weight 1
columns as it does in weight n — 1 columns [4]. Therefore, if the weight
n — 1 column has multiplicity m, then every non-zero word has m one’s in
weight n — 1 columns. Thus, every word must have m one’s in weight 1
columns. Hence, each weight 1 column must have multiplicity m. O

Corollary 8 Let C be a cwatset of order n and let P be the pyramid cwatset
of order n, then PoC 2 C.

Proof: Case 1: If C does not contain a column of weight 1 nor a column of
weight n — 1, then the result is a straightforward application of Theorem 10.

Case 2: If C contains a column of weight 1 or a column of weight n — 1,
then Lemma 19 implies that C' must contain all possible columns of weight 1
and n—1. Additionally, all of these columns must have the same multiplicity.
Since no column of weight 1 or n — 1 can interact with any columns of
other weights, the columns of weight 1 and n — 1 form a non-interacting set
of columns within C. Therefore, concatenation with P just increases the
multiplicity of every column within this set by one. Thus by Theorem 5,
CoP=CO

2.7 Inner and Outer Automorphisms

Definition 28 Let C be a cwatset. Then a bijection f : C — C i3 an
automorphism of C if f is an isomorphism of cwatsets.

Lemma 20 For each (0,0) € Autc, o is an automorphism of C.
Proof: Consider the group automorphism, & given by (r,d)® = (¢~1, 0)(7, d)(c, 0).

Since (r,d)® = (617, d?), then ® respects f. Thus, f is an automorphism
of C. O

Lemma 21 (q,0),(8,0) € Autc induce the same automorphism of C i,
and only if, they are in the same coset of I¢.

Proof: {c,0) and (8, 0) induce the same automorphism if, and only if, for all

b € C,b® = b? or equivalently, b~ = b. This implies that (a8, 0) € I¢;
i.e., that (c, 0) and (8, 0) are in the same coset of Io. O
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We will refer to automorphisms of C' induced by some (a,0) € Autc
as the inner automorphisms of C because they are the only elements of Q¢
which induce an automorphism through their natural group action on the
cwatset.

Lemma 22 Let (0,x) € Q¢. Then the bijection, f, given by b¥ — b? +x
s an automorphism of C if, and only if, x = 0.

Proof: If f is an automorphism of C, then there is an associated group
automorphism @ that respects f. Since ® is an automorphism, (id,0)® =
(id, 0). Since ® respects f, 0/ = 0. Therefore, 0° +z=0=z=0. O

By looking at the permutation representation of a cwatset’s Omega group
we can determine all automorphisms of a cwatset. Recall that a bijection,
f between cwatsets C and D can be represented by a permutation f* such
that f*(¢) = j if and only if f(C;) = D;.

Theorem 11 The group of automorphisms of a cwatset is isomorphic to
the stabilizer of 1 in the normalizer of Rc in S,. Let Ng, (Rc) denote the
normalizer of Rg in Sy,.

Proof: First we show that every element of the stabilizer of 1 in Ng_(R¢) is
an automorphism of the cwatset. Consider an element f* € Ng, (R¢) that
fixes 1. Theorem 7 implies that conjugation by f* is an automorphism of S,
that respects the bijection f. Since f* € Ng,(R¢) we know that conjugation
by f* maps R¢ to itself. Thus f is an automorphism of C.

Next we show that every automorphism of C corresponds to an element
of Ng,(Rc) that fixes 1. Let f be an automorphism of C. Then f* must fix
1. Additionally, there must be an automorphism of S,, that respects f. By
Theorem 7, the only homomorphism from S, that respects f is conjugation
by f*. Conjugation by f* must map R¢ to itself, thus f* must normalize
Rc. Hence, f* must be an element of the stabilizer of 1 in Ng, (R¢). O

Notice that the Wattenburg cwatset,

000
100
110
I/V-lll’
011
001



has only inner automorphisms because Ng,(Rw) = Rw.
However, there are cwatsets that have both inner and outer automor-

phisms. For example, consider the cwatset

C =

O o= O
-0 O
— OO

Since R¢c 9 Sy, every element of Sy that fixes 1 is an automorphism of C.
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3 Primes and Cyclicity

In this section, we establish that prime order cwatsets are cyclic and that
two cyclic cwatsets of the same order are not necessarily isomorphic.

Convention In this section, any cwatset that we consider will have no zero
column (Corollary 7 implies that zero columns may be added and removed
from cwatsets in any manner to obtain a different, but still isomorphic, cwat-
set.)

Convention In this section, when we consider a cwatset of prime order, p,
we will only consider the case where p is an odd prime. (Any cwatset of order
2 with no zero columns will contain only the elements 0 and 1. Since these
order 2 cwatsets are fully understood, the only interesting case is when p is
odd.)

3.1 Cyeclicity
Definition 29 A cwatset C of degree n is cyclic and is generated by a binary

word b € C and permutation o € S, if C = {b,b’ + b,b” + b’ +b,...}.
In this case, we write C =< o,b > .

Proposition 1 If b has even weight and ¢ € S,, then b” + b has even
weight.

Proof: Recall that w(x) is the weight of x. Then w(b” + b) is the number
of places where b” and b differ. Suppose this number is d. If b has &k ones
in these d places and b has [ ones in these d places, then k + 1 = d. Note
also that k = [ since w(b) = w(b?). Therefore, 2k = d, and d = w(b” + b)
is even. O

Corollary 9 IfC is a cyclic cwatset generated by an even weight word, then
every word in C has even weight.

3.2 Cyeclicity of Prime Order Cwatsets

Notice that cwatset C =< o,b > if, and only if, the element (0,b) € Q¢
generates a spanning group of C.
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Theorem 12 If C is a cwatset with |C| = p for some prime p, then C is
cyclic and is generated by an even weight word and a permutation of order

.
Before we prove this theorem, we need a few technical lemmas.

Lemma 23 For every (0,0) € Q¢, there ezists (w,0) € Io such that ow is
isotropic-free (i.e., no cycle of ow acts on identical columns).

Proof: Let (0,0) € Q¢. Suppose that o contains a cycle 7 that acts on
identical columns. Then 7 = (ky, ks, . .., ky,) and there exists ¢ and j with i <
J such that column k; equals column k;. Hence, the transposition (k;, k;) €
Ic. Notice that

7% (ki, ki) = (K1, k2, o ooy Kicns Ky Bty - ooy Koty Kn) (Kiy Kigty - -+, Kjo1)

thus putting the identical columns k; and k; into different cycles. Repeated
multiplication by transpositions will put each pair of identical columns into
distinct cycles. Letting w be the product of all these transpositions, we have
(w,0) € I¢ and ow isotropic-free. O

Lemma 24 Suppose (0,0) € Q¢ for some cwatset C and |o| = p, where p is
prime and |C| = p. Then either (0,0) € I¢ or there exists d € C such that
d,d°,d%*,...,d°"" are all distinct.

Proof: Suppose there does not exist a d € C with d,d?,d°’,...,d""™" dis-
tinct. Let ¢ be an arbitrary element of C. Then ¢ = ¢°" for some n,m
with 0 < n < m < p—1. This implies that ¢ =cfor0<k=m-n <p-1.
Since o is a product of p-cycles, so is 0¥, and furthermore, they have the same
orbits. Now let 7 be one of the p-cycles contained in o*. Then ¢; = Cx(i) for
all 7 in the orbit of 7. Therefore, each cycle of o acts on identical bits in each

word in C, so each cycle of o acts on identical columns in C, hence ¢ € I.
(]

Lemma 25 If C is a cwatset with |C| = p for some prime p, then Q¢
contains an element (o,b) of order p with b # 0.
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Proof: We know that |[Q¢| = |C| - |Autc|. Since |I¢| divides |Autc|, we have
that |Q¢| = |C| - |I¢| - k or |Q¢/Ic| = |C| - k for some k. Therefore, as
|C| = p, it follows that p divides |Q2c/Ic|. Hence, by Cauchy’s Theorem,
|2¢/I¢| contains an element, say (e, c), of order p. By Lemma 23, we may
assume that « is isotropic-free. Hence, |(a,c)| = p - m for some m and
(o,b) = (@, c)™ has order p. Since « is isotropic-free and o = o™, o is also
isotropic-free, and hence (0,0) ¢ Ic. If b = 0 then by Lemma 24 there
exists d € C such that d,d”,d”’,.. .,d°"" are all distinct. However, in
this case the subset {0,d,d’,d",.. .,d°”7'} of C has cardinality p + 1, a
contradiction. Therefore, b # 0 O

Proof of Theorem 12: By Lemma 25, Q¢ contains an element (o, b) of order
p with b 5 0. Since (o,b)P = (¢?,b” " +b” ™" + ... +b° +b) = (id,0),
it follows that |o| divides p. As p is prime and we can assume that |o| # 1
(for otherwise, |C| = 2 # p), we must have |o| = p. Therefore, the following
are elements of C:

b

b’ +b

b”* +b° +b

b +b” T 4. . +b°+b=0
These elements are all distinct, for suppose b + b ™ + ...+ b? +b =
b +b° " +...4+b? + b for some k, l with 0 < k <l < p— 1. This gives
b +b% 7 +...+b*" = 0. Alternatively, b® " +b" ¥ 4. +b°+b = 0.
Thus, we may choose a smallest m with 0 < m < p—1 and b°™ +b°™™" +
...+b% +b = 0. Note that m # 0 since b # 0. Thus, 0 < m < p — 1.
In this case, the second component of (o, b)" equals 0 if, and only if, m + 1
divides n. However, since m + 1 does not divide p (as p is prime), this would
be a contradiction. Therefore, the p elements above are distinct, accounting
for all of the elements of C, and thus C is cyclic with generator (o,b). The
word b must have even weight because any cwatset with an element of odd
weight must have even order (see [7]). O

A natural question is whether or not there is only one isomorphism class
for cwatsets of a given prime order. Consider the following two order 5
cwatsets. The cwatset on the left is C = < (1,2,3,4,5),11000 > and the
cwatset on the right is D = < (1,2, 3,4, 5),10100 >
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11000 10100
10100 11110
10010 11011
10001 01001
000O00O 0000O0O0

It is easily verified that the automorphism group of C has 24 elements
(any permutation of the last 4 columns) while the automorphism group of
D has only 2 elements (the identity and (1, 2)(3, 5)). Also, each cwatset
has a trivial isotropy group. Hence, [2c/Ic| = 120 while |Qp/Ip| = 10.
Therefore, these two cwatsets are not isomophic, and there can be more than
one isomorphism class for cwatsets of a given prime order.

3.3 pxp Cwatsets

Definition 30 A p x p cwatset i3 a cwatset of degree and order some prime
.

Corollary 10 If C is a cwatset with |C| = p for some prime p, then the
degree of C is p-k for some k and C is the concatenation of k p X p cwatsets.

Proof: By Theorem 12, C = < o,b > where |o| = p. Hence, o consists
of k p-cycles for some k. Suppose the I** column of C is fixed by o. If
by =1, then (b° +b); = (b%);+ by = b+ b, = 0, (b° +b” +b), =
(b°*)i + (b°); 4+ by = by + b, + b; = 1, and so on. Thus, |C| would have to
be even, a contradiction. Therefore, b; = 0 and column [ is a zero column,
contrary to our convention. Therefore, the columns of C are partitioned into
k components, each of cardinality p; i.e., C is of degree p - k.

To show that C is the concatenation of k degree p cwatsets, write o as
T172 . . . T Where each 7; is a p-cycle. We claim that the columns in the orbit of
each 7; form a cwatset in their own right. For suppose that 7; = (lylg, ..o\ 0p).
Create the binary word d = byby,---b,. Then < 7,d > is a cwatset
corresponding to the columns in the orbit of 7;. Thus, each p-cycle in o gives
rise to its own cwatset, and the result follows. O
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3.3.1 Equivalence

Proposition 2 Let p be a prime number. A subset C of Z5 is a p X p cwatset
if, and only if, it is equivalent to < (1,2,...,p),b > for some even weight
word b € Z} withb # 0.

Proof: Assume C is a p X p cwatset. By Theorem 12, C = < ¢,c > where
lo| = p and ¢ # 0 is an even weight word. As the degree of C is p and || = p,
it must be the case that o is a p-cycle. Let 7 = (1,2,...,p). Since o and 7
have the same cycle structure, there exists w € S, such that wow™" = 7. Let
b = ¢ so that b* = c. Notice also that 7" = wo"w™1. Thus, ™"*w = wo™
and b™¥ = b*" = (b¥)"" = ¢°". Let D = < ,b >. Then D* = C since

(b)* = ¢
(bﬂ'_l_b)w - b‘R'LU_'_b(JJ
= ¢’ +c
(™ +...4+b)* = b™ 4. . 4b¥
= c"k+...+c

Therefore, C is equivalent to D = < 7,b >. Notice also that since ¢ has
even weight, b =c“” is nonzero and has even weight.

Conversely, suppose C is equivalent to < (1,2,...,p),b > for some even
weight word b € Z§ with b # 0. Again, let 7 = (1,2,...,p). From [7], we
know that | < m,b > | divides 2|r| = 2p. Hence, | < m,b > | € {1,2,p, 2p}.
Since b # 0, we may conclude that | < m,b > | # 1. If | < m,b > | = 2,
then we must have b™ + b = 0, or b* = b. However, this implies that
by = by =b; = ... = b,. Since b # 0 and b # 1 (otherwise b is of
odd weight), this is a contradiction. Thus, we need only show that ¢ =
b™ ™ +b™ " + ...+ b* + b = 0. Consider the k* bit of c:

e = b 4+bI 4. +bl+by
= bk_p.|.1 + bk_p+2 + ...+ bg_; + b

where all of the indices are taken mod p. Thus, c; is the sum of all of the
components of b. Since b has even weight, it follows that ¢, = 0. As k was
arbitrary, ¢ = 0, and the result follows. O
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An exhuastive search of p x p cwatsets for p < 11 is now feasible, since the
above argument reduces the number of cwatsets we must consider equivalence
between to 2P~! — 1, the number of nonzero even weight words in Z5.

3.3.2 Structure and Patterns

Lemma 26 Let C be a cwatset of order n. If ¢ € C is such that ¢; = 1,
where the ith column has weight k, then that column becomes a column of
weight n — k in C +c.

Proof: When we add c to the cwatset, the 1 in the k column changes the k
ones into zeros and changes the n — k zeros in that column into ones because
of binary addition. So the column now has weight n — k. O

Lemma 27 Let C be a cwatset of order n. Each word in C must have the
same number of ones in k columns as in n — k columns.

Proof: Since (C + ¢)? = C, the column weight distributions of C + ¢ and C
are the same. Moreover, the columns of C and C + c disagree only in the
positions of ¢ which are ones. So for every k£ column that goes to a n — k
column, there must be a n — k column that goes to a k column. So ¢ must
also have the same amount of ones in n — k columns as in k columns. O

Corollary 11 (Kerr[4]) Let C be a cwatset of order n. Then C must have
the same number of ones in k columns as in n — k columns.

Lemma 28 If there is some column of weight k in a p X p cwatset, there
must be p — k of those columns as well as k columns of weight p — k.

Proof: k and p — k are relatively prime since p is prime. In order for the
total weight in the k columns to equal the total weight in the p ~ k columns,
there must be at least k/(gcd(k,p — k)) columns of weight p — k. Since
ged(k,p — k) = 1, there must be k columns of weight p — k . The same
argument shows there are p — k columns with weight k. O

Theorem 13 A p x p cwatset is perfect.
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Proof: If we have a p X p cwatset with one column of weight k, Lemma 28
implies it must have k columns of weight p — k and p — k columns of weight
k. Since k + (p — k) = p, all columns are accounted for and there can be no
other columns of any other weight. Hence, the p X p cwatset is perfect. O

The 11 x 11 cwatset < (1,2,...,11),00001001101 >

00001001101
10001101011
11001111000
01101110001
10111110101
11010110111
11100010110
01111000110
00110101110
00010011010
000000O0O0OOCOO

illustrates

Theorem 14 Suppose C' =< (1,2,...,p),b > for b an even weight word.
If by = 0, then column k is the same as column k — 1, but shifted down 1 (so
the bit in the I** row of column k is the same as the bit in the (I — 1)* row
of column (k —1). If by =1, then column k is column k — 1, shifted down
1, and inverted. '

Proof: Consider Cj, the k* bit of the I** word in C. Since C is cyclic,
we know that Cix = Ci_1x-1 + Cox. Thus, if Co = by equals 0, then
Cix = Cj-1,k-1, and column k is column k — 1, shifted down 1. If by equals
1, then Cix = Ci_1 k-1 + 1, so we invert the value of Ci-1p-1. O

From this theorem comes another proof of the fact that p x p cwatsets
are perfect. For suppose that C =< (1,2,...,p),b > is a p x p cwatset, and
that the weight of column 1 is k. If b, = 0, then the previous theorem gives
that the weight of column 2 is also k. If by, = 1, then the weight of column
2 is p — k, since we inverted the previous column. Continuing this process,
we see that every column must be of weight either k or p — k.

Furthermore, we can determine immediately from b the column pairing
of the cwatset along with the column weights. For example, suppose that
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b = 01001100010. The previous argument gives us that columns 2, 3, 4, 6,
7, 8, and 9 all have the same weight. Similarly, columns 1, 5, 10, and 11 have
the same weight. As a result, this cwatset is perfect with a [4, 7] pairing with
columns 2, 3, 4, 6, 7, 8, and 9 of weight 4 and columns 1, 5, 10, and 11 of
weight 7.

It follows that, for each prime p and each integer k € {1,2,...,p — 1},
there exists a p X p cwatset with column pairings [k, p — k]. We need only
look at the cwatset generated by < w,100...00100...00 > where there are
k — 1 zeros between the two ones.

3.3.3 Isomorphism

Proposition 3 A p x p cwatset C has a trivial isotropic subgroup; i.e. C
can not have two identical columns.

Proof: By Proposition 2, C is equivalent to some cwatset D =< 7,b >. Since
C and D are equivalent, C' has a trivial isotropic subgroup if and only if D
does. Suppose that in D, column k equals column ! with k¥ < I. Then we
must have (where all of the subscripts are taken mod p):

by =b,

b1 +by=bi1+b; or by_;=b_;

by 2+biy+br=bi_2+bi1+b or bis=b,
For n =1 — k, it follows that

b; = bl+n = bl+2tn = bl+3tn =
However, up to by (p—1)«n, these are all distinct since

I+zn =, l4+yn
=Tn =, yn
=z =, y since ged(p,n) =1

Thus, either b = 0 or b = 1, a contradiction since these choices for b can
not generate a p X p cwatset. [

Proposition 4 Two p X p cwatsets C and D are isomorphic if and only if
there exists an tsomorphism between Q¢ and S2p which preserves a bijection.

Proof: This follows from the previous corollary since Q¢/Ic = Q¢ and
Qp / Ip=2Qp 0O
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Lemma 29 A pxp cwatset C containing a word of weight n > 0 is equivalent
to < (1,2,...,p),c > for some c of weight n.

Proof: Since C is a p X p cwatset, C = < o,b > for ¢ a p-cycle and b
an even weight word. Let ¢ € C be a word of weight n > 0. Then ¢ =
b’ + b + ...+ b° + b for some k with 0 < k < p— 2. Notice that
C = <o,b>=<o*! ¢ > since:

= b +b” 7 ... +b7+Db
e = BT 4D T+ 4D )T b b T 4 4D+ b
- bdz‘k-H +b62tk + . ,+bd +b

Hence, < o1, ¢ > contains the (k+1)* element of C, the 2(k+1)* element
of C (taken mod p), and so on. As1 < k+1 < p—1 and p is prime, it follows
that < o**!, ¢ > contains every element of C. From the proof of Proposition
2, C = < okt ¢ > is  equivalent to
< (1,2,...,p),¢"" > where (1,2,...,p) = wo**'wl. Since the weight
of ¢“™" equals the weight of ¢, which is n, the result follows. O

Proposition 5 If a non-pyramid p X p cwatset C contains a word of weight
two, then |Autc| = 2.

Proof: Since C contains a word of weight two, by the previous lemma, C
is equivalent to some cwatset D =< (1,2,...,p),b > for some word b of
weight two. Without loss of generality, we can assume that b; = 1 since
rotation of the generating word does not effect equivalence when generat-
ing by (1,2,...,p). Since C and D are equivalent, they have isomorphic
automorphism groups. The remainder of the proof is best seen by example.

D has the following structure, where the marginal entries are row and
column weights.

31



oo
oo
oo
oo
oo
(%4
(4]
(%41
%4
ot
ot
ot
(4]

S
O O O QO O i bk pd ek pd d e
O O O O i b pd i = O
O O O kb e e b b OO
O O b b b b e OO O
O bt el ek ek e pd e el OO OO
O OO C OO O O et bk pd =t i
OO OO OO QO O
C O OO OO = e pd pd pd OO
QOO OO O i b e OO O
OO OO i i i d OO OO
O O Ot i et d = OO O OO
O O bk pd ek ek i OO OO OO
O bd pd e ek ek O OO OO OO

At first, the 1’s expand until they come in contact with one another. Then,
the 1’s on the right move together across the cwatset while the 1’s on the left
remain fixed. Finally, the 1’s eliminate one another. Two automorphisms
are immediate. One the identity. The other is (1 5)(2 4)(6 13)(7 12)(8 11)(9
10), which sends the first word to the (p — 1)* word, the second word to the
(p — 2)™, and so on.

We claim that these are the only automorphisms. For suppose o is an
automorphism which acts on column 6. Then it must move column 6 to
a column of weight 5, and must change the generating word to another of
weight 2. Hence, column 6 must go to column 13 and column 13 must go to
column 6. Note also that by moving column 6, we separate the ones in the
second word, and since we are not in the pyramid cwatset, we must move
column column 7.

Alternatively suppose that ¢ is an automorphism that moves column 7.
Since we are not in a pyramid cwatset column 6 must be moved as well.
However, column 6 must go to column 13, and to keep the words of weight
4 together, column 7 must go to column 12, and column 12 to column 7.
Continuing in this manner, we see that o must be a reflection in the columns
of weight 5. The same reasoning applies to the columns of weight 6, and thus
~ these are the only automorphisms. O
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Lemma 30 If C is a cwatset and there exists d € C with d # 0 such that
(id,d) € Qg¢, then |C| is even.

Proof: Let ¢ € C. Since C +d = C, we must have ¢ +d € C. Notice that
c+d # c since d # 0. We claim that C is equal to the union of disjoint sets
of the form {c,c+d}. fb=c,then b+d=c+d and if b= c+d, then
b + d = c. Therefore, |C| is even. O

Proposition 6 If C is a p X p cwatset for some prime p, and |Q¢| = 2p,
then C = D, (the dihedral group on p symbols).

Proof: We know that the only two groups of order 2p are Z,, and D,. Thus,
to prove the result, we need only show that )¢ is not cyclic. Suppose there
exists (o, b) € Q¢ with order 2p. It follows that |o| divides 2p. We know that
|o| # 2p since that would imply that o contains a p-cycle and a 2-cycle while
only acting on p elements. Also, |o| # 2 for otherwise |C| would divide 4.
Therefore, |o| = p, and it follows that (o, b)? = (id, d) € Q¢ for some d # 0.
By the previous lemma, this would imply that |C| is even, a contradiction.
Thus, ¢ is not cyclic, and the result follows. O

Theorem 15 If two p X p cwatsets C and D have isomorphic Omega groups
and Q| < p* +p, then C = D.

Proof: Consider two p x p cwatsets C and D with Po & Pp. (where Py is
the “isotropy-free” elements of Qx.)

Since C has prime order, we know that C =< o,b > for some o € S,.
Consider the group G =< (0,b) > < Pg. Then the cardinality of G is p.
Since Pg = R¢ < Sy, the cardinality of Pg divides p!. Therefore, p? does not
divide |P¢|. Hence, G is a Sylow p-subgroup of Pg.

Case #1: G is normal in P¢. Then since Po = AutcG and AutcNG = id,
F¢ is isomorphic to a semi-direct product of G and Autc. Since Pg has a
unique sylow-p subgroup, so does Pp. A similar arguement shows that Pp
is a semi-direct product of Autp and H for some H =< (1,d) >. Since P¢
and Pp are isomorphic, the two semi-direct products must be determined
by the same automorphism of Z,. Therefore, there must be an isomorphism
between Pc and Pp that maps Autc to Autp. Hence, by Theorem 3, C = D.

Case #2: G is not normal in Pp. Therefore, there exist kp + 1 sylow-p
subgroups of P, for some integer k¥ > 1. These subgroups are of prime order
and thus have trivial intersection.
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No p-cycle can be associated with the zero word since Pc is isotropy free.
Since the cwatset is of order p and p is prime, every subgroup of order p
spans the cwatset. Thus there are kp + 1 elements of order p associated with
each binary word. Therefore, in order for Case #2 to happen, Pc must have
order at least kp? +p > p*+p. O

Corollary 12 If each of two non-pyramid p x p cwatsets contain a word of
wetght two, then the cwatsets are isomorphic.

Proof: Proposition 5 and Proposition 6 impliy that any two non-pyramid
p X p cwatsets that each contain a word of weight two have isomorphic Omega
groups. Therefore, by Theorem 15 the cwatsets are isomorphic. O

3.3.4 Small Order Classification

We are now in a position to classify p x p cwatsets for small primes.

3 x 3 : From Kerr [4], we know that there is only one equivalence class
of 3 x 3 cwatsets. Therefore there is only one isomorphism class of 3 x 3
cwatsets.

5 x 5: From Kerr [4], we know that there are only two equivalence classes
of 5 x 5 cwatsets. One is the pyramid cwatset. The second is a cwatset with
column weights 2 and 3 (See Appendix A for a complete listing of all p x p
cwatsets, up to equivalence, for p < 13).

Fact 1 There are two isomorphism classes for 5 X 5 cwatsets.

Proof: The Omega group of the pyramid cwatset is isomorphic to Ss
whereas a cwatset in the second equivalence class has an automorphism group
of order 2 since they contain a word of weight two. Since the Omega groups
are not the same cardinality and all p x p cwatsets have trivial isotropy
groups, these two cwatsets cannot be isomorphic. Therefore there are two
isomorphism classes for 5 x 5 cwatsets. O
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7 x 7: Several students at Rose-Hulman did a random search to determine
(with high probability) all cwatsets of degree seven. They found four equiv-
alence classes. We are now able to prove that these are the only possible
equivalence classes.

Fact 2 There are four equivalence classes of 7 X 7 cwatsets.

Proof: Since all p X p cwatsets are perfect, there are only three possible
column pairings for 7 x 7 cwatsets: [1,6], [2,5] and [3,4]. All [1,6] cwatsets are
equivalent to the pyramid cwatset. A [2,5] cwatset has five columns of weight
two and two columns of weight five. This means the total number of ones in
the cwatset is 20. We also know that all words must be of even weight and
of no weight greater than six, otherwise there would be more than one zero
word. It follows that

a+b+c = 6
2a+4b+6¢c = 20

where a, b and c represent the number of words of weight two, four and
six respectively. Solving these equations yields ¢ € {0,1,2}. Proposition 1
implies ¢ % 1. If ¢ = 0, we get that a = 2 and b = 4 which is the weight
enumerator of the cwatset < (1,2,3,4,5,6,7),0000101 >.

An exhaustive computer search showed that a cwatset with this weight
enumerator and column pairing is equivalent to < (1,2, 3,4, 5,6, 7), 0000101 >.

If c =2, then a = 4 and b = 0. By the proof of Proposition 5 we cannot
have more than two words of weight two in a prime order cwatset. So there
is only one [2,5] cwatset equivalence class.

For a [3,4] cwatset, it follows that

a+b+c = 6
20 +4b+6¢c = 24,

which implies ¢ € {0,1,2,3}. Proposition 1 implies ¢ # 1 and ¢ # 3. For
¢ = 0, we get that a = 0 and b = 6, represented by < (1,2, 3,4,5,6,7),0010111 >,
and for ¢ = 2, we get that ¢ = 2 and b = 2, represented by < (1,2, 3,4, 5,6, 7), 0001001 >.
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An exhaustive computer search showed that a 7 x 7 cwatset with column
pairing [3, 4] is equivalent to < (1,2, 3,4, 5,6,7),0010111 > or < (1,2, 3,4, 5,6, 7),0001001 >.
I}

Fact 3 There are three isomorphism classes of 7 x T cwatsets.

Proof: As in the proof of Fact 1 we will look at the Omega groups to deter-
mine isomorphism. The pyramid cwatset has an Omega group isomorphic to
S7. The 7 x 7 cwatset with all words of weight four has an Omega group of
size 168. It is isomorphic to PSL(2,7). The other two inequivalent cwatsets
have Omega groups of size 14. By Corollary 12 since both have words of
weight two, they are isomorphic. This means there are three isomorphism
classes for 7 x 7 cwatsets. O

11 x 11 : An exhaustive computer search showed that there are fourteen
equivalence classes of 11 x 11 cwatsets.

Fact 4 There are four isomorphism classes of 11 x 11 cwatsets.

Proof: Using a computer program to determine automorphisms, we found
the pyramid cwatset’s Omega group is isomorphic to Sjp and the cwatset
with all words of weight six has an automorphism group of order 60. These
two cwatsets are the only members of their respective isomorphism classes.

Corollary 12 implies that the four inequivalent cwatsets with words of
weight two are in another isomorphism class. Three other cwatsets have
automorphism groups of order two. Proposition 6 and Theorem 15 imply
that these are in the same isomorphism class. See Appendix A for a detailed
listing.

The other six inequivalent cwatsets all have trivial automorphism groups
and consequently form the final isomorphism class. O

13 x 13: An exhaustive computer search showed that there are 36 equiva-
lence classes of 13 x 13 cwatsets. A complete listing can be found in Appendix
A.

Fact 5 There are siz isomorphism classes of 13 x 13 cwatsets.

36



Proof: The pyramid cwatset is in an isomorphism class by itself. Using a
computer program to determine automorphisms, we found that a cwatset
with all non-zero words of weight six has an automorphism group of order
432 and is also in an isomorphism class by iteslf.

The five inequivalent cwatsets with words of weight two and four others
with automorphism groups of size two form the next isomorphism class as
with 11 x 11.

There are two inequivalent cwatsets with automorphism groups of order
3. Their Omega groups are isomorphic to the non-abelian group of order 39.
We found an isomorphism between the two Omega groups that respected a
bijection between the cwatsets, so these two cwatsets form an isomorphism
class.

There are also two inequivalent cwatsets with automorphism groups of
order 4. Their Omega groups are isomorphic to the group of order 52 with
the following generators and relations:

<zy, 727y, 4% 20, 57 ety ey, aya iy >

The three nontrivial elements of the automorphism group, are z, z~! and
y. We define z = (7, b) to be an element of the Omega group where 7 is
the pure p-cycle (1,2,3...p) and b is the word that generates the cwatset
with 7. If we map generators to generators and preserve the relations, we
also preserve a bijection between the cwatsets. So these two form the fifth
isomorphism class of 13 x 13 cwatsets.

The rest of the inequivalent 13 x 13 cwatsets have trivial automorphism
classes and form a . O

Classification of larger p X p cwatsets becomes difficult because the num-
bers involved become too large for our methodology to be practical. For
instance there are 260 equivalence classes of 17 x 17 cwatsets and 804 equiv-
alence classes of 19 x 19 cwatsets.
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4 Parallels to Group Theory

4.1 Cwatsets and Groups

Proposition 7 1. The cwatset C is a group if, and only if, (id,c) € Q¢
for everyc e C.

2. If Cis a group cwatset and d € C, then (0,d) € Q¢ if, and only if,
(o,¢) € Q¢ for every c € C.

Proof: 1. By definition, C is a group if, and only if, C + ¢ = C for every
c € C; i.e, if, and only if, (id, c) € Q¢ for every c € C.

2. Let (0,c) € Q¢. By definition, C° +d = C. Since C is a group and
de(C,C+d=C,s50C=C°. Thus,foranyce C,C’°+c=C+c=C=
C+d=C"+d. O

Fact 6 Non-cyclic groups that are cwatsets can be cyclic as cwatsets.

For example, the cyclic cwatset

0000
1100
0111
1011

((1,2),0111) of Q¢ is a non-cyclic group.
Also, recall that the property of being a group is not preserved under
isomorphism of cwatsets.

4.2 Subcwatsets

Definition 31 A cwatset K which is a subset of the cwatset C is a subcwat-
set of C (denoted K < C) if there exists a morphism from K to C whose
image 18 the copy of K within C.

Note that by this definition, if K < C, then there exists a group homo-
morphism @ : Qg — Q¢ such that Q¥ projects to the copy of K within
C.

Lemma 31 The relation ‘<X’ is reflezive.
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Proof: Consider the identity bijection from C to itself. This bijection is
respected by the trivial automorphism of Q¢. Thus, the identity bijection is
a morphism and hence ‘<’ is reflexive. O

Lemma 32 The relation ‘<X’ is transitive.

Proof: Let K < C and C < D. By definition, there exists ® : x — Q¢ and
¥ : Q¢ — Qp. Since @ respects a bijection f and ¥ respects a bijection g,
W o ® respects the bijection g o f. We know that g o f maps K to the copy
of K within D. Therefore the image of K under ¥ o ® projects to the copy
of K within D. Hence, K < D. O

Lemma 33 Let K < C and ® be a group homomorphism from Qg to Sl¢
such that Q¥ projects to K. Then Q% < Q.

Proof: It suffices to show that for all (o,b) € QF, K +b = K because then
0% < Qk.

Consider k € K. Since Q¥ projects to K, there exists a (r,k) € Q%. QF
is a group, so (m,k)(o,b) = (70,k° + b) € Q. Thus, k” +b € K for all
k € K and hence (o,b) € Qk. This implies, Q% < Qg. O

Theorem 16 If K < C then there is an isomorphic copy of Pk contained
in Q¢ that projects to K.

Proof: Assume that K < C. Then there exists a ® : Qg — Q¢ such that Q%
projects to K. Since QF projects to K, ker(®) < Autc. Therefore, Lemma
3 implies that ker(®) < Ic. The previous lemma implies that Q% < Q,
therefore since Qx = Px X Ix and ker(®) < Ig, we know that Q% has a
subgroup, G & Qg /Ix = Px. Hence )¢ has a subgroup isomorphic to Pk.
|

Theorem 17 If K < C and f : C — D 1is an isomorphism of cwatsets, then
f(K) =2 D.

Proof: Since K < C, then there exists a morphism of cwatsets, h : K — C
such that the image of h is the copy of K within C. Let ® be the group
homomorphism associated with h and let ¥ be the group isomorphism as-
sociated with f. Since ® respects h, and ¥ respects f then ¥~'®V is a
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group homomorphism that respects f~'hf. Therefore, f~'hf is a morphism
of cwatsets from f(K) to the copy of f(K) within D. O

Lagrange’s Theorem does not hold for cwatsets.

Proposition 8 The order of a subcwatset does not necessarily divide the
order of the cwatset.

This proposition is evident from the following result.
Lemma 34 Every cwatset of degree d is a subcwatset of Z4.
Proof: The cwatset Z4 contains all possible words of degree d. Therefore, its

Omega group is the entire wreath product S,2Z,. Thus, since every cwatset’s
Omega group is a subgroup of S, 1 Zy, Pp < ng which implies C < Z3 D

Cauchy’s Theorem does not hold for cwatsets.

Proposition 9 If a prime number, p, divides the order of a cwatset, then
the cwatset does not necessarily contain a subcwatset of order p.

This proposition is evident from the following counter-example:

0000O0O
0000O0O01
011100
C'—101111
100111
011110

This cwatset has an Omega group of cardinality 6 (generated by ((1, 2)(3, 5),0000001)

and ((1,4,2)(3,6,5),011110)). Therefore there is single element of the Omega
group associated with a given binary word. Thus any subset of C' with car-
dinality three will have three elements of the Omega group associated with
it. However, the only cwatset of order three is F = {000,110,101} and
| Pr| = 6. Hence, C cannot have a subcwatset of order three.
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4.3 Normal Subcwatsets

Definition 32 Let f : C — D be a morphism of cwatsets. Then ker(f) =
{beC| f(b)=0}.

Note that the kernel of a morphism is not necessarily a subcwatset. For
example, recall that the cwatset

000O0ODO
000O0O1
011100
C'“101111
100111
011110

has no subcwatsets of order three. Consider the morphism f : C — {0,1}
defined as:

#(000000)
£(011110)
£(100111)
£(000001)
£(011100)
F(101111)

nnomn
R o T o Y e T e Y e

and the accompanying group homomorphism @ : Q¢ — {(id,0), (3d,1)} de-
fined as:

(¢d,000000)®* = (id,0)

((1,4,2)(3,6,5),011110)* = (id,0)
((1,2,4)(3,5,6),100111)% = (id,0)
((1,2)(8,5),000001)* = (id,1)
((2,4)(5,6),011100)* = (id,1)
((1,4)(3,6),101111)% = (id,1).

The kernel of this morphism is {000000,011110, 100111} which is not a sub-
cwatset of C.
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In group theory, a subgroup K is normal in a group G if, and only if,
K is the kernel of some group homomorphism ¢ : G — H. Therefore, the
natural definition of a normal subcwatset would be a subcwatset that is the
kernel of some morphism. Unfortunately, such a definition is too broad and
results in situations where two morphisms of the same cwatset can have the
same kernel and yet have images that are not isomorphic. What we would
like to is an analog to the first isomorphism theorem for groups, which states
that if & and ¥ are both homorphisms defined on the same group, then
ker(®) = ker(¥) implies In(®) = Im(¥).

Theorem 18 (Analogue to First Isomorphism Theorem of Groups)
Let f : C' — A be a surjective morphism of cwatsets with ker(f) = K < C, let
h : C — B be a surjective morphism of cwatsets with ker(h) = K < C and let
® and ¥ be the group homomorphisms associated with f and h respectively.
If ® maps Q¢ onto Py and ¥ maps Q¢ onto Pg, then A= B.

Proof: Suppose Im(®) is not isomorphic to Im(¥). We know that I m(P) =
P4 and Im(¥) = Pg. Therefore, neither Im(®) nor Im(¥) have a normal
subgroup within the image of the elements of Q¢ associated with words in
the kernel. However, either ker(®) < ker(¥) or ker(¥) < ker(®). Thus either
Im(®) or Im(¥) has a normal subgroup within the image of the elements of
()¢ associated with words in the kernel, which is impossible.

Therefore, Im(®) 22 I'm(¥) and clearly since ® and ¥ each respect some
bijection, there exists an isomorphism between Im(®) and Im(¥) that re-
spects some bijection. Therefore, Im(®) = P4 and Im(¥) = Pp implies that
A B. O

It is this proof that prompts the following definition of a normal subcwat-
set.

Definition 33 A subcwatset K of C is said to be a normal subcwatset of C
if K 1is the kernel of some morphism whose associated group homomorphism
maps Q¢ onto Pp for some cwatset D. We then write K < C.

Theorem 19 If K « C and f : C — D is an isomorphism of cwatsets,
then f(K) <« D.

Proof: Let ® be the group isomorphism associated with f. Theorem 17
implies that f(K) < D. Therefore it remains only to exihibit a morphism
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of cwatsets with kernel f(K) that has an associated group homomorphism
that maps {2c onto Pr for some cwatset F.

Since K < C, we know that there exists a cwatset F, and a morphism
of cwatsets h : C — F such that ker(h) = K. Let ¥ be the group homo-
morphism associated with h. Then ho f~! is a mapping from D to F with
kernel f(K). Additionally, ¥ o ®~! is a group homomorphism from 2 onto
Pp that respects ho f~1. Thus, f(K) < D. O

Definition 34 Let X be a subset of the cwatset C, then (Qc)x is the set of
all (0,x) € Q¢ such that x € X.

Lemma 35 If K < C, (Qc)k is a subgroup of Qc.

Proof: Since K <« C, there exists a morphism f, such that ker(f) = K. Let
® be the group homomorphism associated with f. Since ® respects f, all
elements of (¢)x are mapped to words of Im(®) associated with 0 and an
element not in (Q¢)x cannot be mapped to a word associated with 0. Since
the words in I'm(®) associated with 0 form a subgroup of Im(®), (Qc)k
must must be a subgroup of Q. O

Theorem 20 (Analog to Lagrange’s Theorem) A normal subcwatset, K
of C, induces a partition of K in which the components are of equal cardinal-
ity. Hence, the order of a normal subcwatset divides the order of the cwatset

Proof: For (m,d) € Q¢, let (Qc)k(m,d) be a right coset of (Q¢)x and let
K(r,q) be the set of binary words, b such that (o,b) € (Q¢)x (7, d) for some
o. We will refer to these sets as the slabs of K.

We know that every element of Q¢ is in some coset of () x (since () x
partitions {2¢). Every binary word in the cwatset is associated with some
element of Qc. Therefore, every binary word is in some slab of K.

Assume b € C'is in two distinct slabs of K. Then there exists (o, b), (7,b) €
Q¢ such that (o,b) and (7, b) are in distinct cosets of (2¢)x-.

(W,b)(O‘, b)_l ¢ (QC)K
= (m,b)(e™1, b7 ) ¢ (Q)k
= (WU—I,O) ¢ (QC)K
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However, since 0 € K, (mo~1,0) is an element of Q¢ assoicated with a word
in K. Thus, (m67!,0) € (Q¢)k, which is a contradiction. Hence distinct
slabs of K are disjoint and the slabs of K partition C.

It will now suffice to show that |K(yq)| = |K| for all (7,d) € Qc¢. For all
k € K, there exists an (a,k) € Q¢. Thus (o, k)(7,d) € (Q¢)x(7,d) which
implies that k™ +d € K(r,4). Therefore, for each k € K, k™ +d € K q).
Notice that:

k"+d=b"+d=k"=b"=k=h.
Therefore, |K(xq)| > |K|.

For all b € K( a), there exists an (g,b) € Q¢. Thus (o,b) € (QC) k(m,d)
which implies that (o,b)(r1,d"") € (QC) k. Hence, (b +d)" € K.
Therefore, for each b € Kz q), (b + d)""' € K and these elements are
distinct:

b+d)"  =(c+d)" = (b+d)=(c+d)=>b=c.
Therefore, |Kxa)| < |K|. O
Recall that (0,x) € Q¢ acts on C by the mapping c(®®) = ¢° + x.

Theorem 21 If K < C, then every element of Q¢ maps slabs of K to slabs
of K.

Proof: Let (a,a),(8,b) € Qc. Then a and b are in the same slab of K if
and only if

(@,a) (1, bP7) = (af7%,2% " +bP7) € (Qe)k

Let (0,x) € Q¢. Consider, a®*) = a’ 4+ x and b(®® = b? +x. We know
that (ao,a’ + x), (Bo,b? + x) € Q¢. Therefore, a° + x and b? + x are in
the same slab of K if, and only if,

(ac,a” +x)(c™87, (7 +x)" ) € Q¢
& (ef™ a7 +x7FT 4T X7 € Q¢
& (@2 +b7) € Q¢
Thus, a” + x and b? + x are in the same slab of K if, and only if, a and b

are in the same slab of K. Hence, every element of {2c maps slabs of K to
slabs of K. O



Corollary 13 If K < C, then every element of Autc fires K for all K <
C.

Proof: Theorem 21 implies that K% = K¢ is a slab of K. Additionally,
0 € K and 0 € K¢ which implies, K = K°. Therefore, K is invariant under
the action of (0,0). O

Since each element of (¢ maps slabs of K to slabs of K for any K <« C,
then the action of (¢ on the slabs of K is well defined.

Definition 35 For K < C let Rejk be the permutation representation of
the action of Q¢ on the slabs of K in C.

Lemma 36 If K < C and f : C = D is a morphism with ker(f) =
then f(a) = f(b) if, and only if, a and b are in the same slab of K.

Proof: Let @ be the group homomorphism associated with f. Then ®((Q¢)k) <
Autp. This means cosets of (Q¢)x in ¢ will be mapped to cosets of Autp
in Qp. Therefore, since distinct cosets of Autp are associated with distinct
words in D and since ® respects f, slabs of K must be mapped by f to
distinct words in D. O

Since a cwatset is defined to be a set of binary words, it doesn’t make sense
to discuss quotient cwatsets, as these would be sets of sets of binary words.
However, although the slabs of K do not form a cwatset, their representation
under the action of {2c behaves as we would like the representation of a
quotient cwatset to behave. The following result is analagous to the theorem:
if G and H are groups and ¢ : G — H is a group homomorphism with kernal
K, then G/K =2 H. This justifies the use of the notation Reyk.

Theorem 22 Let f : C — D be a morphism of cwatsets with ker(f) = K <
C, then there ezxists an ordering of the slabs of K such that Rc/x = Rp.

Proof: Lemma 36 implies that, f maps distinct slabs of K to distinct words
in D. Order the slabs of K such that f maps the i* slab, denoted by L;, to
the i** word in D.

We will first show that Reyx < Rp. If 8 € Rc/x then there exists
a (0,x) € Q¢ such that for all s € L;,s° + x € Ly. Let ® be a group
homomorphism associated with f and let ®(o,x) = (7,y) € Qp. Consider
an arbitrary (a,s) € Q¢ such that s € L;. Then there exists 3 such that
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®(e, 5) = (B, D;) € Qp where D; is the i word in D. Since ® is a group
homomorphism and ® respects f, then there exists a 7 such that:

?(a,5)2(0,x) = ¥((e,8)(0,x))
= (6,D))(m,y) = ®(ao,s” +x)
= (67, D +y) = (7,Da).

Therefore, there exists a (7,y) € Qp such that DF +y = Dy. By definition,
@ € Rp and RC/K < Rp.

We will now show that Rg/x > Rp. If § € Rp then there exists a
(m,y) € Qp such that Df +y = Dy. Since Rp is a faithful representation
of Pp, (m,y) can be chosen such that (r,y) € Pp. Since ® maps Q¢ onto
Pp, then there exists a (o,x) € Q¢ such that ®(0,x) = (7,y). Additionally,
for an arbitrary (8, D;) € Pp, there exists (, s) such that ®(a, s) = (8, D)
which implies s € L;. Since ® is a group homomorphism that respects 7,
then there exists a 7 such that

®(a, 5)®(0,x) = ®((a,s)(o,x))
= (8, D;)(m,y) = ®(ao,s’ +x)
= (B, D +y) = (v, f(s" +x))
= (Bm, D) = (v, f(s* +x)).

Therefore, for s € L;, s7+x € L. Since, (0, x) must map slabs of K to slabs
of K then s +x € Li® for all s € L;. Thus, 6 € Rg/k. Hence Re/k > Rp.
0

Definition 36 A cwatset is simple if it has no proper normal subcwatsets

The Analog to Lagrange’s Theorem implies that all prime order cwatsets
are simple. Additionally, we can show that there exist simple cwatsets of
each order.

Theorem 23 Pyramid cwatsets of every order are simple.

Lemma 37 If C is a pyramid cwatset of order n, then the alternating group,
Ap, is a subgroup of Q¢ and C is the image of A,, under the natural projection.
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Proof: A pyramid cwatset has no repeated columns, therefore it has a trivial
isotropy subgroup which implies Q¢ = Py. Additionally, we know that
Pc = Rc < S,. Let o be a permutation that fixes the weight n — 1 column
in C. Then, (,0) € Autc. Therefore, |Autg| = (n —1)!. This implies,
|2¢| = n!. Hence, S, & Q.

It will suffice to show that p~1(4,) < Q¢, and that C is the natural
projection of ¢~(A4,) is C. Or equivalently, since A, contains all of the even
permuations, we would like to show that for every ¢ € C, there exist two
transpositions 7y and 7, such that (173, ¢) € Qc.

We will exhibit such transpositions.

00000 .0

11000 . 0

10100 . 0

c=10010 . 0

1 0001 . 0

10000 ...1

So

((2, 3)(4, 5), 00000...0) € Q¢
((1, 2)(3, 4),11000. .. 0) € Q¢
((1,3)(4,5),10100...0) € Q¢
((1, 4)(2, 3), 10010...0) € Q¢
€ Q¢

((1,5)(2,3),10001. . .0)

((1,n)(2,3),10000...1). € Q¢
|

We now present a proof of Theorem 23. Proof: Recall from Lemma 35
that if K is a normal subcwatset of C, then the elements of Q¢ corresponding
to words in K form a subgroup of Q¢. We need to show that the correspond-
ing words of the elements of any subgroup of Q¢ are either 0 or all of C.

The cases for n = 1 and n = 2 are trivial. Case n = 3 follows immediately
from the Analog to Lagrange’s Theorem since 3 is prime.
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Case n = 4.

C =

e e i ™)
O = O
-0 O

0
0
0
1

Note that Q¢ = S, and [Autc| = 6. There is no normal subcwatset of order
3 because 18 does not divide 24. If a normal subcwatset, K, of order 2 exists
then (Q¢)x would have order 12, implying (2c)x & A4. But according
to Lemma 37, A; must have elements corresponding to every word in the
cwatset.

Case n > 5. For n > 5, A, is the only proper subgroup of index less than
n in S,. If there is a normal subcwatset, K, with (Q¢)x 2 A, of Q¢ = S,,,
then

|Snl |n|
Sp 1 (2 >n= >n=|(Q < —.
[ ( C)K] |(QC)K| I( C)Kl "
However, |Autc| = li—"l, so (2c)x must have |(Qo)k| = ml“f;ﬁl for some

integer m. Thus, the only possible subgroup H has order ]ST"[, so (Q)k
must be Autc. But Autc projects to 0, while if the normal subcwatset, K,
has (Q¢)x = An, Lemma 37 implies that (Q¢)k projects to C. O

4.4 Normal Subsets

A problem with the definition of normal subcwatset is that the kernel of a
morphism need not be a subcwatset. Consider the cwatset:

000O0O0CO
000O0O0T1
011100
0—101111
100111
011110

We showed earlier that this cwatset has no subcwatsets of order 3. How-
ever, the mapping from this cwatset to Z, that maps all of the even weight
words to 0 and all of the odd weight words to 1 is a morphism of cwatsets
whose kernel is the three words in C of even weight.
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Definition 37 N i3 a normal subset of a cwatset C if N is the kernel of
some morphism whose associated group homomorphism maps Q¢ onto Pp
for some cwatset D.

The next seven corollaries all follow from the fact that none of the cor-
responding proofs about normal subcwatsets used the fact that the normal
subset was a subcwatset.

Corollary 14 If N is a normal subset of C and f : C — D i3 an isomor-
phism of cwatsets, then f(N) is a normal subset of D.

Proof: This result follows from Theorem 19. O

Corollary 15 If N is a normal subset of C, then all the elements of Q¢ that
correspond to words in K form a subgroup of Q¢.

Proof: This result follows from Lemma 35. O

Corollary 16 (Analog to Lagrange’s Theorem) A normal subset induces
a partition of the words of a cwatset into components of equal cardinality.
Proof: This result follows from Theorem 20. O

Slabs of normal subsets can be defined analogously to slabs of normal
subcwatsets. If N is a normal subset of a cwatset C then we say that b € C'is
in the slab N, q) if there exists a (0, b)) € Q¢ such that (o,b) € (Qc)n(m, d).

Corollary 17 Every element (o,b) of Q¢ induces a mapping, c¢(®P) = c?+b,
on C. This mapping maps slabs of N to slabs of N for any normal subset N
of C.

Proof: This result follows from Theorem 21. O

Corollary 18 If N is a normal subset of C and f : C — D is a morphism
of cwatsets with ker(f) = N, then f(a) = f(b) if, and only if, a and b are
in the same slab of N.

Proof: This result follows from Lemma 36. O
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Corollary 19 Let f : C — D be a morphism of cwatsets with ker(f) = N,
where N is a normal subset of C. Then there ezists an ordering of the slabs
of K such that Rc/x = Rp.

Proof: This result follows from Theorem 22. O

Lemma 38 The set of all even weight words in a cwatset, C, forms a normal
subset of C.

Proof: Let E be the set of all even weight words in C. Let (Q¢)z be the set
of all elements of Q¢ that correspond to words in E. (Q¢)E is closed because
the permutation of an even weight word is an even weight word and the sum
of two even weight words is an even weight word. Therefore, (Qc)e < Qc.

There are two cases to consider. The first is (Q¢)g = Q¢. ie. E = C.
In this case, there is a morphism that maps every element in C to 0. (It is
a morphism because it is respected by the trivial group homomorphism that
maps every element of Q¢ to (id,0).) ‘

The second case is [Q¢:(Qc)g] is two. Then (Q¢)g < Q. This means
there is a group homomorphism from Q¢ to Z, = Qz, with kernel (Q)E-
"This group homomorphism respects the mapping from C to Z, with kernel
E. Thus F is a normal subset of C. O

4.5 An Alternative Definition of Subcwatset

The definition of subcwatset presented previously in this paper was moti-
vated by the fact that in other areas of algebra substructures are the images
of morphisms. As demonstrated in the previous sections this definition leads
to a rich theory of subcwatsets. However, it is possible that the definition pre-
sented is too strong. It seems unfortunate that the kernel of a morphism is not
necessarily a subcwatset. Additionally, it seems unfortunate that Cauchy’s
theorem does not hold for cwatsets. The following alternative definition of
subcwatset results in an analog to Cauchy’s theorem for even order cwatsets
and causes the kernel of a morphism to always be a subcwatset.

Definition 38 (Alternative Definition of Subcwatset) K is a subcwat-
set of cwatset C' if there exists a subgroup of Q¢ whose projection is K.

Theorem 24 If a cwatset, C, has even order then by the above definition it
has a subcwatset of order 2.
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Proof: If there exists an element (o, b) € Q¢ such that b° + b = O then the
subgroup of ()¢ generated by this element will project to a subset of C with
order 2, thus satisfying the definition of a subcwatset.

Assume that there is no such element in ¢. For every (m,y) € Q¢, there
exists a smallest k such that (m,y)* = (*,0). If this k is even, then (7, y)*/2
is an element (o, b) such that b° + b = 0 which is a contradiction.

Suppose k is odd for each (7,y) € Q¢. Then < (w,y) > is a cyclic group
that projects to k words in C. Since |C| is even and k is odd, then there must
exist an element (a,a) € Q¢ that doesn’t project to a word associated with
< (m,y) >. Consider < (a,a) > which must also project to an odd number
of words. Then since < (7,y) > N < (o, a) > projects to an odd number of
words, < (m,y) > U < (a,a) > projects to an odd number of words. Thus,
since |C| is even, there must be some element of Q¢ that projects to a word
not in < (m,y) > U < (a,a) >. A continuation of this argument implies
there are an infinite number of words in C' which is a contradiction. O

Conjecture 1 A cwatset whose order is divisible by a prime, p, has a sub-
cwatset of order p under Definition 38.

4.6 Direct Sums

A formal definition of ’direct sum’ is more notational clutter than content.
It suffices to say that the direct sum of cwatsets uses their cartesian product
as the underlying set and that the addition of binary n-tuples and the action
of permutations on these n-tuples is done in the appropriate component-wise
manner (see [7]). It follows that for any cwatsets C' and D,

IC®D| = |C||D| and
deg(C® D) = deg(C) + deg(D),
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It was conjectured in [7] that every cwatset is the direct sum of cyclic
cwatsets. The example

—_H O O OO
O b=k =D OO
O O e = O
O = O ~=OO
OO R OO

011

shows that this conjecture is false. If E is a direct sum then its components
must have orders 2 and 4. The only cwatset of order 2 is Z,, whose degree is
one. If E = C & Z, for some cwatset C, then there would exist a column in
E whose removal yields four pairs of identical words. It is easily verified that
no such column exists in F, therefore F is not a direct sum. E isn’t cyclic
because 2z & Dy and Dy doesn’t have a cyclic subgroup of order eight.

It was conjectured in [4] that every cwatset is the direct sum of perfect
cwatsets. The example

1100010100
1010011110
G=1001011011
1000101001
00000O0O0CO0OO0OO

shows that this conjecture is also false. Since G has prime order it cannot
be a direct sum and since G has columns of weights 1,2,3,and 4, it is not
perfect.

One would expect that the direct sums of isomorphic cwatsets to be
isomorphic; i.e. CZ Fand DY F implis C® DXE@F.

"The following example shows this to be false. Let W = {000, 001,011, 111, 110, 100}
and F = {000,110,101}. Consider W @ W and F & Z,. W = W, and
W = (F @ Z,). Note that W is not equivalent F @ Z,. It can be shown
that |Autwew| = 8 and |Autwerez;)| = 4. Both W and F @ Z, have
trivial isotropy groups, so by Lemma 40, so does the Omega group for
their direct sum. Thus, due to cardinality differences in the Omega groups,
WoW2RWe (F& 2Z,).

However,
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Theorem 25 If |Qcep| = [Qc||Np], [Qper| = |QE|Qr|, C 2 E, and D =
F,then C® D2 E@ F.

Before we can prove this theorem, some background work is necessary.
First we must establish some properties about the Omega group of a direct
sum of cwatsets. Recall, that b ¢ d is the concatenation of b and d.

Given a direct sum of cwatsets C & D, recall that ¢ ¢ 0 is the element of
C @ D in which 0 € D is appended to ¢ € C.

Proposition 10 Given two cwatsets C and D,
1. Q¢ 1s isomorphic to a subgroup of Qcep.
2. Qp is isomorphic to a subgroup of Qcep.

Proof: 1. Let A = {(0,c00) | C° + ¢ = C}. We need to show that A is
contained in Q¢gp, and Q¢ = A. Then A < Qcgp will follow.

We will first prove that A C Q¢gp. Since o will permute only the columns
in C, (C® D)° =C? @ D. Thus for any element (g,c ¢ 0) in A,

(C®D) +co0=(C°+c)d(D+0)=CoD.

Next, we must prove that Q¢ = A. Let ¢((0,c©0)) = (0,¢). ¢ is a
homomorphism because

¢((01,€100)(02,¢200)) = ¢((0102,(c1 ©0)°* + ¢z 00))
¢((0102, (c7* + ¢3) © 0))
(0102,€5% + c2)

(01,¢1)(02, €2)

= (p((O‘l, C1 0 0))‘P((021 C2¢ O))

If (0'1,(:1) = (0’2,62), then 01 = 09 and C; = Cay. So Ci o0 = Ca © 0. This
implies that (o3,¢; ¢ 0) = (03,¢2 ¢ 0). Thus, ¢ is injective. If (0,c) € Q¢,
then (0,c©0) € A by our definition of ¢. This means that [Q¢| < |A], so
¢ is surjective. The proof of 2 is similar to that of 1, with the appropriate
'shift’ of the permutations involved. O

Corollary 20 C = (C00) < C® D, and D= (Do0)<Ce®D.
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Proof: We first show that mapping f : C — C @ D defined by f(c) =
(c©0) for all ¢ € C is a morphism of cwatsets. Consider the group hiomomor-
phism ¢! : Q¢ — Qcgp defined by ¢~1(0, ¢) = (0, c©0). From the proof of
Proposition 10 we know that ¢! is a group homomorphism. It is clear that
¢! respects f. Hence, f is a morphism of cwatsets.

Corollary 7 implies that C = (C 00). So, there exists an h: (C 00) — C
such that h is an isomorphism of cwatsets. Therefore, foh: (Co0) - C®D
is a morphism of cwatsets whose image is the copy of (C ¢ 0) within C @ D.
Therefore, (C¢0) < C & D.

A similar arguement show that, D = (Do0) < C@® D. O

Since Theorem 25 involves the isomorphism of two cwatsets, it is necesary
to reintroduce the splitting and isotropy groups in relation to direct sums of
cwatsets, but first, more notation:

Definition 39 Given an element (w,d) € Qp, the permutation n' is m
shifted |C| places to the right.

Lemma 39 Given two cwatsets, C and D, Pc x Pp is isomorphic to a sub-
group of Pegp.

Proof: Recall that Pc x Pp = {((o,¢), (w,d)) | (o,¢) € Pc & (r,d) € Pp}.
Let H = {(on',cod) | (0,¢) € Po & (7,d) € Pp} We must show that
H < Pggp such that Po x Pp = H.

First we show that (C @ D)°™ +cod = C @ D. By definition, C° + ¢ =
C and D" +d = D. Since 0 and 7' permute only elements of C and D
respectively,

(C® D)™ +cod (C°@®@D")+cod
(C°+c)® (D™ +d)

= CeD. (1)

Therefore, H < Pcgp.
To establish that Pc x Pp = H, consider the mapping ¢ such that

go:PCxPD - H
((oyc), (m,d)) — (on',cod).
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@ is a homomorphism because

o(((o1, €1), (m1,d1)) * ((02, €2), (M, d2))) = @((0102, €T + €2), (72, dT? + dy))
= (0’10'2(7'{'171'2)’, (ng -+ Cg) < (d"lr2 + dg))
= (oymioomh, (cy 0d;)72™ + (c2 0dy))
= ¢((o1,¢1), (m1,d1)) ({02, C2), (2, dg)).

Let (o1m,¢; 0dy) = (027}, €2 0 dg). Then g7} = ogmy. Since o; and 7}
permute only columns of C and D respectively, 0y = 02 and 7} = 7). Also,
¢1 ¢ dy = ¢; 0 dp implies ¢; = ¢; and dy = dy. Thus, (01,¢;) = (02, ¢;) and
(7T1,d1) = (7T2, d2)7 50 ((Ul) c1)7 (71'1, dl)) = ((021 c2)7 (71'2, d2)) Therefore 14 is
injective.

Thus since |[H| = |P¢c x Ppl, ¢ is a surjection. O

Definition 40 Let C, D be cwatsets. The C-section of C @ D is the block of
columns comprised of words from C.

For example, in F'@® W, the F-section is made up of the first 3 columns,
and the W-section is the last 3 columns.

Definition 41 A crossover automorphism is an element (0,0) of Autcep
such that o moves at least one column in the C-section to a column in the
D-section.

Lemma 40 Given two cwatsets C and D, Iggp = I x Ip.
Proof: Define ¢ such that

QD:chID — IC@D
(o,m) — or'.

Since o and 7' commute, it follows that ¢ is a homomorphism:

¢((o1,m)(02,m3)) = #((o109, m173))
0102(7r17r2)'

0102M Ty

01T 02Ty
= ¢((o1,m))p((a2,72)).
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And ¢ is also injective, since o17] = oo} implies 07 = 04 and m; = 79,
again because o and 7’ act only on the columns of C and D respectively.

|Icep| > |Ic||Ip| because if o € I¢ x Ip, then (c,d)” = (c?,d?) = (c,d).
This implies that (cod)® =c”0d’ =cod, 50 0 € Iggp.

Next we will prove that [Icgp| < |Ic|lIp|- (c0d)’ = cod, and we would
like to show that ¢” = ¢ and d” = d. In order to do this, we must show that
o effects either ¢ or d, but not both. Recall that the isotropy subgroup is the
set of permutations which do not change any word in the cwatset. Notice
that if o € I¢, then o permutes some repeated columns of C. If there are no
crossover automorphisms, o can only effect ¢ or d. v

In order to show that there are no crossover automorphisms, we must
prove that if m is a column in the C-section of C'® D, m cannot be repeated
in the D-section of C' @ D. Without loss of generality, arrange the elements
of C @ D in the following manner:

¢ dy
C1 dg

C1 dm
cz dy

Cn dm
We may also assume that there are no columns of 0’s, since Corollary 7 implies
that adding or deleting such columns preserves isomorphism of cwatsets. Also
recall that no cwatset can have a column of all 1’s.
Consider a column, m, in the C-section: it will have a series of 0’s and
1’s, each repeated |D| times. It is impossible for a column in the D-section of
C ® D to be identical to m because then every word in D would be required

to have the same bit in a certain column, thus creating a 0 or 1 column.
Thus, o permutes either ¢ or d, so (¢,d)’ = (¢,d), and 0 € I¢ x Ip. O

Corollary 21 Given two cwatsets C and D, Q¢ x Qp is isomorphic to a
subgroup of Qcgp.
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Proof: Using Lemma 39, Lemma 40 and Theorem 2 we have,

QOXQD (Pcb(IC)X(PDD(ID)
(PC X PD) X (IC X ID)

Pegp X Icgp = Qcop-

IA IR IR

a

Corollary 22 Given two cwatsets C and D,

Q||| = |Qep] = Q¢ x Qp = Qcep
= Pg X Pp & Pegp.

Proof: If |Q¢||Q2p] = |Qcep|, then Corollary 21 implies ¢ % Qp is isomorphic
to a subgroup of Qcqp. We know that |Q¢| = |Pel|Ic], so

|PeopllIcen] = [Qcepl
102111973

= |Pc||lIc||Ppl|Ip|.

But Lemma 21 shows that |Icgp| = |I¢||Ip|. Therefore |Pogp| = |Pc||Ppl.
0

Corollary 23 Qcgp = QcxQp <= (Co0) < CHD, and (Do0) < C®D.

Proof: Let Qcep = Q¢ X Qp. Corollary 20 states that (Co0) < C@ D. Let
f:C®D — D be the mapping defined by f(cod) = d for all (cod) € CaD.
define

¢:Qcep — Qp
(om,cod) — (m,d).

We know that ¢ is well defined because Qcgp = Q¢ x Qp. Therefore ¢ is
a group homomorphism that respects f and f is a morphism of cwatsets.
Clearly the kernel of f is (C ¢ 0), so all that remains to be shown is that
there is a group homomorphism whose image is Pp that respects f. Let v be
a group homomorphism from Qp to Pp that respects the identity bijection.
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Then v o ¢ is a group homomorphism from Qcgp to Pp that respects f.
Therefore, (C 00) < C & D.

Conversely, if Qcgp % Q¢ X §p, there exists a crossover automorphism,
(7,0) € Qcgp. If (C00) < C & D, Lemma 13 states that C is fixed
by every automorphism of C @& D. But by definition, 7 senda at least one
column in the C-section to a column in the D-section. Thus, (C ¢ 0) is
not fixed under isomorphism by (7,0) € Q2cgp, contradicting the fact that
C < C®D. O We now prove Theorem25. Proof: Recall from Corollary

3that C® D = E @ F if and only if there exists a bijection respecting
isomorphism between the splitting groups.
C = E, D= F implies |C| = |E| and |D| = |F|, so

|C® D|=|C||D| = |E||F| = |E® F|,

thus a bijection exists between C ® D and E @ F.

By Corollary 22 and the fact that |Qcep| = |Qc||Qb], |Reer| = |QE||QF],
Fegp & Pe X Pp and Pggr & Pgp X Pp. Since C = FE and D = F, there
exist bijection-respecting isomorphisms ¢ : Pc — Pg and ¢ : Pp — Pr.

So we have

PC@D = PC X PD =~ PE X PF = PE@F-

Define v to be (¢, ¢): PoxPp — PgxPp, where y((o, ¢), (7, d) = (¢((0, ¢)), ¥((7,d)))
if (0,¢) € P¢ and (m,d) € Pp. This is a bijection-respecting isomorphism
between splitting groups. Hence C®@ DX FE@ F. O

4.7 Semi-Direct Sums

Definition 42 Let C and D be cwatsets (of common degree) such that Pp
normalizes Q¢ with Q¢ and Pp having trivial intersection. Consider the
subgroup K =< Q¢, Pp > of Sy 1Z,, Call the cwatset that is the projection
of this group the semi-direct sum of C and D. We write C& D = Proj(K).

Note that if we use the alternative definition of a subcwatset then the
references to Pp in the above definition could be replaced by “any group
that projects to D” and we would still get the same results. Pp was used in
the above definition because we desire the semi-direct sum to have C and D
as subcwatsets.
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Note that since Q)¢ and Pp have trivial intersection, and Pp normalizes
Q¢, then K =< Q¢, Pp > is a semi-direct product of Qs and Pp with Q¢
normal in K. Also note that K < Qcwp and so ¢ X Pp < Qcwp.

Lemma 41 Let C and D be cwatsets such that Pp normalizes Q¢ with Q¢
and Pp having trivial intersection. Then C and D are both subcwatsets of
CwD.

Proof: We know that Q¢ < K < Qewp. So the identity mapping f : C —
CWD defined by f(c) = c for all ¢ € C is a morphism of cwatsets because the
identity homomorphism ® : Q¢ — Qcwp respects f. Therefore C < C@ D.

Additionally, we know that Pp < K < Qup. Let g: D — C W D be the
mapping defined by g(d) = d for all d € D. We know that there exists a
group homomorphism @ : Qp — Pp that respects the identity mapping on
D. Consider the group homomorphism ¥ = { o & where ( is the identity
homomorphism from Pp to Qcyp. Since ¥ respects g, g is a morphism of
cwatsets. Therefore, D < Cw D. O

Lemma 42 Let C and D be cwatsets such that Pp normalizes Q¢ with Q¢
and Pp having trivial intersection. Then each coset of Q¢ in K =< Q¢, Pp >
projects to a set of |C| binary words.

Proof: Consider a coset Q¢(a, a). For each x € C, x*+a is in the projection
of Q¢(a,a). Since x* + a = y® + a implies x = y, these |C| words are
distinct. Additionally, if y* + a is in the projection of Q¢(c,a), then y € C
because there exists a (7,y) € Q¢. Thus, these are exactly |C| words in the
projection of Q¢(a, a). O

Lemma 43 Let C and D be cwatsets such that Pp normalizes Q¢ with Q¢
and Pp having trivial intersection. The projections of two cosets of Q¢ in
K =< Q¢, Pp > intersect if, and only if, the projections are equal.

Proof: 1t will suffice to show that if a binary word is in the projection of two
cosets, the two cosets project to the same set of words.

Consider two cosets, (o, a)Q2c and (8, b)Sc. If there exists a binary word
that is in both cosets then a’ + x = b™ + y for some (0,x), (7,y) € Q¢.
Therefore, b = a’"" +y™ +x* . Thus (a,a)(0,x)(r"L,y" " € (o, a)Q
projects to b. Therefore, for any ({,z) € Q¢, (a,a)(0,x)(7~1,y" ' )((,2) €
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(o, a)2c projects to the same binary word as (8, b)(¢,2) € (8, b)S2c. Hence,
the two cosets project to the same set of binary words. O

Note that if Qc and Pp have trivial intersection, then each coset of Q¢
in < Q¢, Pp > contains a unique element of Pp.

Lemma 44 Let C and D be cwatsets such that Pp normalizes (o with Q¢
and Pp having trivial intersection. If (a,a) € Pp and the coset (o, a)Qc
contains an element associated with 0, then a = 0.

Proof: Assume the coset (a,a){lc contains an element associated with O.
Then there exists (o,x) € Q¢ such that a” + x = 0. This implies a = x”
However, x° ' € C, therefore a € C. But we already know that a € D
because (a,a) € Pp. Thus, since CND=0,a=0. 0

Lemma 45 Let C and D be cwatsets such that Pp normalizes Q¢ with Q¢
and Pp having trivial intersection. Two cosets of Q¢ in K =< Q¢, Pp >
project to the same set of binary words, if, and only if, the associated elements
of Pp project to the same binary words.

Proof: Let (a,a),(8,b) € Pp define the cosets (a, a)Q¢ and (3, b)Q¢ in K.
Lemma 43 implies that if a = b, then the two cosets share a word and thus
project to the same set of binary words. Therefore, it will suffice to show
that if the two cosets project to the same set of binary words, then a = b.

Assume that two cosets project to the same set of binary words. Then
there exists (0,x) € Q¢ such that b’ + x = a. So we have that (o,a) €
(a,a)c and (fo, b" + x) € (B,b)Q2c. Therefore, we know there exists
(7,¢€) € (Ba™',b*" +a° )Q¢ such that (v,c)(a,a) projects to (b? + x).
Thus, ¢c* +a = b”+x =a=c=0. We know that (o, a), (8,b) € Pp.
Therefore, (ﬁa ! " +a ) € Pp. So, by the previous lemma, we have
that b®™" + = o This implies that a = b. O

Theorem 26 The order of the semi-direct sum of cwatsets C and D is the
product of the orders of C and D; i.e., |Cw D| = |C||D|.

Proof: Let K =< Q¢, Pp >. It will sufficient to show that K projects to
|C|| D] words.

From Lemma 42 we have that each coset projects to a set of |C| words.
From Lemma 43 we have that these sets are either identical or disjoint. From
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Lemma 45 we have that two cosets of Q¢ in K project to the same set of
words only if they are associated with the same word in D. Therefore K
projects to |D| disjoint sets of |C| words each. Hence K projects to |C||D|
words. O

Lemma 46 (id, 1) is in the center of S, 1 Zs.
Proof: Let (0,x) € Sy 1Z,. Then
(0,%x)(id, 1) = (0,x"* + 1) = (0,1° + z) = (id, 1)(0, x)

O

Corollary 24 If C is a cwatset that does not contain the all one word, then
CU{C + 1} is a cwatset.

Proof: Since, (id,1) is in the center of S, 1 Z,, (id, 1) is in the normalizer
of any Omega group. Let D be the cwatset consisting of the all zero word
and the all one word. Then P¢ = {(id, 0), (id,1)} C Ns,z,(2¢c). Therefore,
C U {C + 1} is the semi-direct sum of C and D. Therefore, C U {C + 1} is
a cwatset. [

As we saw with direct sums of cwatsets, when Qcyp % Q¢ x Pp then
semi-direct product structure is not necessarily preserved under isomorphism.
For example:

OOONOOOO 000 0000
110=1100a,nd111§1111
101 1010
However,
000 0000
110 1100
101 1010
111¥1111
001 0011
010 0101
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A Collection of Prime Order Cwatsets

We have generated an extensive collection of, equivalence classes and iso-
morphism classes of p by p cwatsets for small prime numbers p. All of the
cwatsets are given by their generator word and we assume 7 = (1, 2,...,p).

Note that in all of these examples the cwatsets have trivial isotopy groups,
and if the Omega groups of the cwatsets are isomorphic then the cwatsets are
isomorphic. We do not believe that this is true in general, but we were unable
to find either a counterexample. It would be usefule to find the smallest pair
of cwatsets C' and D such that Q¢/Ic = Qp/Ip, but C ¥ D.

5xp < 00011 > pyramid cwatset Q= S;s
< 00101 > [2,3] column pairings = Ds
< 0000011 > pyramid cwatset Q=8
rxy < 0010111 > All words weight four Q = PSL(2,7)
< 0000101 > [2,5] Q=D,
< 0001001 > [3,4] Q= D,
< 00000000011 > pyramid cwatset Q= S;
< 00000000101 > [2,9] Q=D
< 00000001001 > [3,8] Q=D
< 00000010001 > [4,7] Q= Dy
< 00000101101 > [4,7] Q=Dy
< 00010011001 > [5, 6] Q= Dy
11x11 < 00000100001 > |5, 6] Q=D
< 00000010111 > (3, §] Q=Z,
< 00000100111 > [4,7] Q=7
< 00001001011 > [4,7] N7,
< 00001000111 > [5, 6] Q=7
< 00001001101 > [5,6] Q=Z,
< 00010001011 > |5, 6] Q=Zy

< 00000100001 > all words weight 6 || = 660
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13x13

< 0000000000011 >
< 0000000000101 >
< 0000000001001 >
< 0000000010001 >
< 0000000101101 >
< 0000011100111 >
< 0000000100001 >
< 0000010011001 >
< 0000100101001 >
< 0000001000001 >
< 0000000010111 >
< 0000000100111 >
< 0000001001011 >
< 0000001011111 >
< 0000001000111 >
< 0000001001101 >
< 0000010001011 >
< 0000010010101 >
< 0000010011111 >
< 0000100101111 >
< 0000100111011 >
< 0000010000111 >
< 0000100001011 >
< 0000100010101 >
< 0000100011001 >
< 0000100110111 >
< 0000010001101 >
< 0000100111101 >
< 0000101100111 >
< 0001000110111 >
< 0000000101011 >
< 0000001110111 >
< 0000010111101 >
< 0001001101011 >
< 0001011001101 >
< 0000010101111 >

pyramid cwatset

[6,7]
[6,7]
[6,7]
[6, 7]
[6, 7]
[6, 7]
[6, 7]
[6, 7]
[6, 7]
(3,10]
[4,9]
[5, 8]
[6,7]
6,7]
all words weight 6
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Q=853
Q= Dy
Q= Dy
Q= Dis
= D3
= D3
Q= D3
Q= Dy
Q= Dyg
Q= Dig
N =73
Q= Zs;
D=3
N=Zy3
A=YATS
1= Zs3
Q=73
Q= Zss
Q ng3
Q=73
Q=2
Q=73
ON=Zy3
Q=73
Q=27
N=Zy3
N=Zy3
Q=7
Q=7
= AT
1] = 39
] = 52
Q] = 52
Q] = 39
Q] =178
Q| = 5616



B Examples of Omega Groups

One

way to generate the Omega group for a cwatset C is to find the

automorphism group of the cwatset through exhaustive search, and then
find a permutation corresponding to each word in the cwatset. The group
generated by this set of elements will be the Omega group for C. Here are a
few cwatsets and their Omega groups.

0000
0011
Gi=9 101
1001
( (id, 0000), ((3,4),0011), ((2,4),0101), ((1,4),1001) )
((1,2),0000), ((1,2)(3,4),0011), ((1,3)(2,4),0101), ((1,4)(2,3),1001)
G =4 ((1,3),0000), " ((2,4,3),0011),  ((2,3,4),0101),  ((1,3,4),1001)
G = ((2,3),0000), ((1,4,3),0011), ((1,4,2),0101), ((1,2,4),1001)
((1,2,3),0000), ((1,2,4,3),0011), ((1,3,4,2),0101), ((1,2,3,4),1001)
L ((1,3,2),0000), ((1,4,3,2),0011), ((1,4,2,3),0101), ((1,3,2,4),1001) )
> S, |
0000
1100
G=9111
1011
Note that C, is also a group.
(¢d, 0000), (id, 1100), (d,0111), (id,1011)
Q- = ((1,2),0000), ((1,2),1100), ((1,2),0111), ((1,2),1011)
@ ((3,4),0000), ((3,4),1100), ((3,4),0111), ((3,4),1011)
((1,2)(3,4),0000), ((1,2)(3,4),1100), ((1,2)(3,4),0111), ((1,2)(3,4),1011)
000
110
011
W= 111
100
0 01
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(id,000),  ((1,2),110),  ((2,3),011)
((1,3),000), ((1,3,2),110), ((1,2,3),011)

Qw =
(id,111)  ((2,3),100)  ((1,2),001)
((1,3),111) ((1,2,3),100) ((1,3,2),001)

= Deg

C3=

OO MO MO
O HRHOOO
O OO O
O OO RO
—_ O OO MO

( (id, 00000) )
(id, 10111)
((1,5),00100)
((1,5),10011)
((3,4),11110)
((3,4),01001)
((1,5)(3,4),11100)

| ((1,5)(3,4),01011) |

IR

Dy

Cy=

O OO

O O
O O O
ot DO e ek O

o

Qc, is cyclic because Cy =< (1,2, 3),1001 >.
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( (id, 0000) ((3,4),0011) ((3,4),1100)
((1,3),0000) ((1,2),0011) ((1,2),1100)
((2,4),0000)  ((1,3,2),0011)  ((1,3,2),1100)

((1,2)(3,4),0000)  ((1,2,4),0011)  ((1,2,4),1100)

((1,3)(2,4),0000)  ((1,4,3),0011)  ((1,4,3),1100)

((1,4)(2,3),0000)  ((2,3,4),0011)  ((2,3,4),1100)

((1,2,3,4),0000) ((1,4,2,3),0011) ((1,4,2,3),1100)
((1,4,2,3),0000) ((1,3,2,4),0011) ((1,3,2,4),1100)

(id, 1111) ((1,4),0110) ((1,4),1001)
((1,3),1111)  ((2,3),0110)  ((2,3),1001)
((2,4),1111)  ((1,2,3),0110)  ((1,2,3),1001)

((1,3)(2,4),1111)  ((1,3,4),0110)  ((1,3,4),1001)
((1,4)(2,3),1111)  ((1,4,2),0110)  ((1,4,2),1001)
((1,2)(3,4),1111)  ((2,3,4),0110)  ((2,3,4),1001)
((1,2,3,4),1111) ((1,2,4,3),0110) ((1,2,3,4),1001)
((1,4,3,2),1111) ((1,3,4,2),0110) ((1,3,4,2),1001) |

\

C A Categorization of Low Order Cwatsets

Order 1:

There is only one subgroup of S;. Therefore, by Theorem 7 up to isomor-
phism, there can only be one cwatset of order one. Therefore, all cwatsets of
order one must be isomorphic to:

Order 2:

There is only one subgroup of Ss, whose order is a multiple of two. There-
fore, by Theorem 7 up to isomorphism there can only be one cwatset of order
two. Therefore, all cwatsets of order two must be isomorphic to:

0
1

Order 3:
There are only three possible columns in an order three cwatset. Every
non-zero element must have the same number of one’s in weight one columns
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as it does in weight two columns [4]. Therefore, each of the three non-
zero columns must have the same multiplicity. Therefore every cwatset of
order three is isomorphic to a cwatset in which each non-zero column has
multiplicity one. Thus, since appending the all zero column doesn’t change
the isomorphism class of a cwatset, all cwatsets of order three are isomorphic
to:

_ - o
O - O
==

Order 4:

Up to isomorphism, there are only three perfect non-zero cwat-multisets
of order four. These cwatsets have Omega groups isomorphic to Sy, Dy and
Z3®Zy. It can easily be shown that any concatenation of these cwatsets will
be isomorphic to one of these three. Therefore any cwatset of order four is
isomorphic to:

or or

O s O
[T R A
- OO
O O
e OO
O e O
QO = = O
O hd pd O

Order 5:

There are only three inequivalent non-zero perfect cwat-multisets of or-
der five. They are the complete cwatset with columns of weights one and
four, the complete cwatset with columns of weights two and three and the
cyclic cwatset generated by (1,3,5,2,4) and 11000. Lemma 18 implies that
all complete cwatsets are isomorphic but the third cwatset’s Omega group is
isomorphic to Dj so it cannot be isomorphic to a complete cwatset. There-
fore, since concatenation with a complete cwatset doesn’t change a cwatset’s
isomorphism class, all cwatsets of order five are isomorphic to:

000O0TO 0000O00GO
11000 11000
11110o0r10100
01111 10010
00011 10001
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