312 research outputs found

    Disaggregate access mode and station selection models for rail trips /

    Get PDF

    Experimental evidence for the dynamic Jahn-Teller effect in La\u3csub\u3e0.65\u3c/sub\u3eCa\u3csub\u3e0.35\u3c/sub\u3eMnO\u3csub\u3e3\u3c/sub\u3e

    Get PDF
    Recently, it has been argued that a strong electron-phonon interaction arising from the Jahn-Teller splitting of the outer Mn d level plays a crucial role in understanding the nonmetal-to-metal transition observed in the La1-xAxMnO3 (A=Ca, Sr, Ba) system. We show, by neutron powder diffraction, that La0.65Ca0.35MnO3 exhibits an anomalous volume and oxygen/manganese displacement change around Tc, in qualitative agreement with the theoretical prediction

    ESR investigations on Ca perovskite

    Get PDF
    Electron spin resonance studies on fine powders of La0.65Ca0.35MnO3, performed in the X band, are reported. The coexistence of paramagnetic and ferromagnetic phases, in a narrow temperature range close to the Curie temperature, is observed. The electron spin resonance measurements do not support the presence of bipolarons above the Curie temperature. Temperature dependence of the ESR linewidth is governed by the hopping of polarons and the corresponding activation energy is about 150 meV above Tc

    Oxidation of metals at the chromium oxide interface

    Get PDF
    Metal thin-film deposition, over the Cr2O3 surface of CrO2 thin-film substrates, exhibits a redox reaction at the interface. The transition metal forms an oxide in combination with the reduction of the near-surface chromium oxide to Cr2O3 . The insulating barrier layer Cr2O3 increases with the formation of Pb3 O4 in Pb/Cr2O3 /CrO2 and CoO in Co/Cr2O3 /CrO2 junctions, respectively

    A Phase I/IIA Clinical Study With A Chimeric Mouse-Human Monoclonal Antibody To The V3 Loop Of Human Immunodeficiency Virus Type 1 Gp120

    Get PDF
    A phase I/IIA clinical trial with the chimeric mouse-human monoclonal antibody CGP 47 439 to the principal neutralization determinant in the V3 region of human immunodeficiency virus type 1 (HIV-1) strain IIIB envelope protein gp 120 is reported. The trial was an uncontrolled single-center, open-label, multidose tolerability, immunogenicity, and pharmacokinetic study in homosexual men with advanced HIV disease. Patient groups were formed on the basis of the reactivity of the antibody with the gp 120 of their HIV-1 isolates. Intravenous infusions of 1, 10, and 25 mg of antibody were followed by seven escalated doses of 50, 100, and 200 mg, every 3 weeks. The antibody was well tolerated; no toxicity was observed. Some patients showed a transient but insignificant antibody response to the antibody with no apparent adverse reactions or accelerated elimination of it. Substantial serum levels of the antibody were maintained with a mean t1/2ÎČ of 8-16 days. A virus burden reduction was observed in some patient

    Electronic-structure modifications induced by surface segregation in La\u3csub\u3e0.65\u3c/sub\u3ePb\u3csub\u3e0.35\u3c/sub\u3eMnO\u3csub\u3e3\u3c/sub\u3e thin films

    Get PDF
    Using spin-polarized inverse photoemission and X-ray absorption spectroscopy techniques, we show that the electronic structure of La0.65Pb0.35MnO3 thin films depends on the composition at the surface. With a gentle annealing procedure, the surface provides a maximum of 80% spin asymmetry at 0.5 eV above the Fermi level in spite of extensive Pb segregation. A heavily annealed (restructured) surface exhibits a reduced surface ordering temperature of 240 K (compared to the approximately 335 K bulk value) as well as a reduced spin asymmetry value of 40% at 0.5 eV above Fermi energy

    Density and Magnetic Field Asymmetric Kelvin‐Helmholtz Instability

    Get PDF
    The Kelvin‐Helmholtz (KH) instability can transport mass, momentum, magnetic flux, and energy between the magnetosheath and magnetosphere, which plays an important role in the solar‐wind‐ magnetosphere coupling process for different planets. Meanwhile, strong density and magnetic field asymmetry are often present between the magnetosheath (MSH) and magnetosphere (MSP), which could affect the transport processes driven by the KH instability. Our magnetohydrodynamics simulation shows that the KH growth rate is insensitive to the density ratio between the MSP and the MSH in the compressible regime, which is different than the prediction from linear incompressible theory. When the interplanetary magnetic field (IMF) is parallel to the planet\u27s magnetic field, the nonlinear KH instability can drive a double mid‐latitude reconnection (DMLR) process. The total double reconnected flux depends on the KH wavelength and the strength of the lower magnetic field. When the IMF is anti‐parallel to the planet\u27s magnetic field, the nonlinear interaction between magnetic reconnection and the KH instability leads to fast reconnection (i.e., close to Petschek reconnection even without including kinetic physics). However, the peak value of the reconnection rate still follows the asymmetric reconnection scaling laws. We also demonstrate that the DMLR process driven by the KH instability mixes the plasma from different regions and consequently generates different types of velocity distribution functions. We show that the counter‐streaming beams can be simply generated via the change of the flux tube connection and do not require parallel electric fields

    Correlation of tumor-associated macrophages and clinicopathological factors in Wilms tumor

    Get PDF
    Background/purpose: Despite high long-term survival rates in patients with Wilms tumor, there is a need to develop better prognostic biomarkers in order to maximize cure while avoiding treatment-associated morbidities. Tumor-associated macrophages have been recently associated with poorer prognosis and increased disease progression in a number of adult cancers. We investigated the relationship between macrophages and clinicopathological fators in this pediatric solid tumor. Methods: Tissue microarray sections of 124 Wilms tumor cases obtained from the Cooperative Human Tissue Network were stained with CD68, a macrophage marker using standard immunohistochemical techniques and quantified using digital image processing techniques. Macrophage densities were correlated by tumor stage, and survival analyses were conducted with available clinical data. Immunohistochemistry was performed on 25 additional Wilms tumor cases obtained from the tumor bank at Columbia University Medical Center and correlated with presence of tumor microvascular invasion. Results: Mean macrophage count densities in stage IV tumors were significantly greater than densities in stage I and III tumors (p=.021, .036). Although the overall and disease-free survival did not differ between high and low macrophage presence groups across all stages, increased macrophage presence was associated with decreased disease-free survival in patients with stage II tumors (p=0.035). Increased macrophage presence may have also correlated with decreased disease-free survival in stage IV patients, but the sample size was too small to allow detection of this difference with significance (p=0.575). Increased macrophage presence was associated with tumor microvascular invasion (p=0.0004). Conclusion: Our results suggest that macrophage recruitment may be associated with disease progression in Wilms tumor. Quantitation of macrophage presence may therefore be a useful adjunct in refining staging algorithms for patients with stage II Wilms tumor. Such data might be useful in the effort to reduce the risk of adverse effects associated with under- or overtreatment of this neoplasm

    Aberrant Lymphatic Endothelial Progenitors in Lymphatic Malformation Development

    Get PDF
    Lymphatic malformations (LMs) are vascular anomalies thought to arise from dysregulated lymphangiogenesis. These lesions impose a significant burden of disease on affected individuals. LM pathobiology is poorly understood, hindering the development of effective treatments. In the present studies, immunostaining of LM tissues revealed that endothelial cells lining aberrant lymphatic vessels and cells in the surrounding stroma expressed the stem cell marker, CD133, and the lymphatic endothelial protein, podoplanin. Isolated patient-derived CD133+ LM cells expressed stem cell genes (NANOG, Oct4), circulating endothelial cell precursor proteins (CD90, CD146, c-Kit, VEGFR-2), and lymphatic endothelial proteins (podoplanin, VEGFR-3). Consistent with a progenitor cell identity, CD133+ LM cells were multipotent and could be differentiated into fat, bone, smooth muscle, and lymphatic endothelial cells in vitro. CD133+ cells were compared to CD133− cells isolated from LM fluids. CD133− LM cells had lower expression of stem cell genes, but expressed circulating endothelial precursor proteins and high levels of lymphatic endothelial proteins, VE-cadherin, CD31, podoplanin, VEGFR-3 and Prox1. CD133− LM cells were not multipotent, consistent with a differentiated lymphatic endothelial cell phenotype. In a mouse xenograft model, CD133+ LM cells differentiated into lymphatic endothelial cells that formed irregularly dilated lymphatic channels, phenocopying human LMs. In vivo, CD133+ LM cells acquired expression of differentiated lymphatic endothelial cell proteins, podoplanin, LYVE1, Prox1, and VEGFR-3, comparable to expression found in LM patient tissues. Taken together, these data identify a novel LM progenitor cell population that differentiates to form the abnormal lymphatic structures characteristic of these lesions, recapitulating the human LM phenotype. This LM progenitor cell population may contribute to the clinically refractory behavior of LMs
    • 

    corecore