214 research outputs found

    Using hand proportions to test taxonomic boundaries within the \u3ci\u3eTupaia glis\u3c/i\u3e species complex (Scandentia, Tupaiidae)

    Get PDF
    Treeshrews (order Scandentia) comprise 2 families of squirrel-sized terrestrial, arboreal, and scansorial mammals distributed throughout much of tropical South and Southeast Asia. The last comprehensive taxonomic revision of treeshrews was published in 1913, and a well-supported phylogeny clarifying relationships among all currently recognized extant species within the order has only recently been published. Within the family Tupaiidae, 2 widely distributed species, the northern treeshrew, Tupaia belangeri (Wagner, 1841), and the common treeshrew, T. glis (Diard, 1820), represent a particularly vexing taxonomic complex. These 2 species are currently distinguished primarily based on their respective distributions north and south of the Isthmus of Kra on the Malay Peninsula and on their different mammae counts. This problematic species complex includes 54 published synonyms, many of which represent putative island endemics. The widespread T. glis and T. belangeri collectively comprise a monophyletic assemblage representing the sister lineage to a clade composed of the golden-bellied treeshrew, T. chrysogaster Miller, 1903 (Mentawai Islands), and the long-footed treeshrew, T. longipes (Thomas, 1893) (Borneo). As part of a morphological investigation of the T. glis–T. belangeri complex, we studied the proportions of hand bones, which have previously been shown to be useful in discriminating species of soricids (true shrews). We measured 38 variables from digital X-ray images of 148 museum study skins representing several subspecies of T. glis, T. belangeri, T. chrysogaster, and T. longipes and analyzed these data using principal components and cluster analyses. Manus proportions among these 4 species readily distinguish them, particularly in the cases of T. chrysogaster and T. longipes. We then tested the distinctiveness of several of the populations comprising T. glis and T. longipes. T. longipes longipes and T. l. salatana Lyon, 1913, are distinguishable from each other, and populations of T. ‘‘glis’’ from Bangka Island and Sumatra are distinct from those on the Malay Peninsula, supporting the recognition of T. salatana, T. discolor Lyon, 1906, and T. ferruginea Raffles, 1821 as distinct species in Indonesia. These relatively small, potentially vulnerable treeshrew populations occur in the Sundaland biodiversity hotspot and will require additional study to determine their appropriate conservation status

    What is Pseudonovibos spiralis?

    Get PDF

    Using hand proportions to test taxonomic boundaries within the \u3ci\u3eTupaia glis\u3c/i\u3e species complex (Scandentia, Tupaiidae)

    Get PDF
    Treeshrews (order Scandentia) comprise 2 families of squirrel-sized terrestrial, arboreal, and scansorial mammals distributed throughout much of tropical South and Southeast Asia. The last comprehensive taxonomic revision of treeshrews was published in 1913, and a well-supported phylogeny clarifying relationships among all currently recognized extant species within the order has only recently been published. Within the family Tupaiidae, 2 widely distributed species, the northern treeshrew, Tupaia belangeri (Wagner, 1841), and the common treeshrew, T. glis (Diard, 1820), represent a particularly vexing taxonomic complex. These 2 species are currently distinguished primarily based on their respective distributions north and south of the Isthmus of Kra on the Malay Peninsula and on their different mammae counts. This problematic species complex includes 54 published synonyms, many of which represent putative island endemics. The widespread T. glis and T. belangeri collectively comprise a monophyletic assemblage representing the sister lineage to a clade composed of the golden-bellied treeshrew, T. chrysogaster Miller, 1903 (Mentawai Islands), and the long-footed treeshrew, T. longipes (Thomas, 1893) (Borneo). As part of a morphological investigation of the T. glis–T. belangeri complex, we studied the proportions of hand bones, which have previously been shown to be useful in discriminating species of soricids (true shrews). We measured 38 variables from digital X-ray images of 148 museum study skins representing several subspecies of T. glis, T. belangeri, T. chrysogaster, and T. longipes and analyzed these data using principal components and cluster analyses. Manus proportions among these 4 species readily distinguish them, particularly in the cases of T. chrysogaster and T. longipes. We then tested the distinctiveness of several of the populations comprising T. glis and T. longipes. T. longipes longipes and T. l. salatana Lyon, 1913, are distinguishable from each other, and populations of T. ‘‘glis’’ from Bangka Island and Sumatra are distinct from those on the Malay Peninsula, supporting the recognition of T. salatana, T. discolor Lyon, 1906, and T. ferruginea Raffles, 1821 as distinct species in Indonesia. These relatively small, potentially vulnerable treeshrew populations occur in the Sundaland biodiversity hotspot and will require additional study to determine their appropriate conservation status

    Guidelines of the American Society of Mammalogists for the use of wild mammals in research

    Get PDF
    Guidelines for use of wild mammal species are updated from the American Society of Mammalogists (ASM) 2007 publication. These revised guidelines cover current professional techniques and regulations involving mammals used in research and teaching. They incorporate additional resources, summaries of procedures, and reporting requirements not contained in earlier publications. Included are details on marking, housing, trapping, and collecting mammals. It is recommended that institutional animal care and use committees (IACUCs), regulatory agencies, and investigators use these guidelines as a resource for protocols involving wild mammals. These guidelines were prepared and approved by the ASM, working with experienced professional veterinarians and IACUCs, whose collective expertise provides a broad and comprehensive understanding of the biology of nondomesticated mammals in their natural environments. The most current version of these guidelines and any subsequent modifications are available at the ASM Animal Care and Use Committee page of the ASM Web site (http://mammalsociety.org/committees/index.asp).American Society of Mammalogist

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education.

    Get PDF
    Guidelines for use of wild mammal species in research are updated from Sikes et al. (2011). These guidelines cover current professional techniques and regulations involving the use of mammals in research and teaching; they also incorporate new resources, procedural summaries, and reporting requirements. Included are details on capturing, marking, housing, and humanely killing wild mammals. It is recommended that Institutional Animal Care and Use Committees (IACUCs), regulatory agencies, and investigators use these guidelines as a resource for protocols involving wild mammals, whether studied in the field or in captivity. These guidelines were prepared and approved by the American Society of Mammalogists (ASM), in consultation with professional veterinarians experienced in wildlife research and IACUCs, whose collective expertise provides a broad and comprehensive understanding of the biology of nondomesticated mammals. The current version of these guidelines and any subsequent modifications are available online on the Animal Care and Use Committee page of the ASM website (http://mammalogy.org/uploads/committee_files/CurrentGuidelines.pdf). Additional resources pertaining to the use of wild animals in research are available at: http://www.mammalsociety.org/committees/animal-care-and-use#tab3. Resumen—Los lineamientos para el uso de especies de mamíferos de vida silvestre en la investigación con base en Sikes et al. (2011) se actualizaron. Dichos lineamientos cubren técnicas y regulaciones rofesionales actuales que involucran el uso de mamíferos en la investigación y enseñanza; también incorporan recursos nuevos, resúmenes de procedimientos y requisitos para reportes. Se incluyen detalles acerca de captura, marcaje, manutención en cautiverio y eutanasia de mamíferos de vida silvestre. Se recomienda que los comités institucionales de uso y cuidado animal (cifras en inglés: IACUCs), las agencias reguladoras y los investigadores se adhieran a dichos lineamientos como fuente base de protocolos que involucren mamíferos de vida silvestre, ya sea investigaciones de campo o en cautiverio. Dichos lineamientos fueron preparados y aprobados por la ASM, en consulta con profesionales veterinarios experimentados en investigaciones de vida silvestre y IACUCS, de quienes cuya experiencia colectiva provee un entendimiento amplio y exhaustivo de la biología de mamíferos no-domesticados. La presente version de los lineamientos y modificaciones posteriores están disponibles en línea en la página web de la ASM, bajo Cuidado Animal y Comité de Uso: http://mammalogy.org/uploads/committee_files/CurrentGuidelines.pdf). Recursos adicionales relacionados con el uso de animales de vida silvestre para la investigación se encuentran disponibles en (http://www.mammalsociety.org/committees/animal-care-and-use#tab3)

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Chromatin remodelling complex dosage modulates transcription factor function in heart development

    Get PDF
    Dominant mutations in cardiac transcription factor genes cause human inherited congenital heart defects (CHDs); however, their molecular basis is not understood. Interactions between transcription factors and the Brg1/Brm-associated factor (BAF) chromatin remodelling complex suggest potential mechanisms; however, the role of BAF complexes in cardiogenesis is not known. In this study, we show that dosage of Brg1 is critical for mouse and zebrafish cardiogenesis. Disrupting the balance between Brg1 and disease-causing cardiac transcription factors, including Tbx5, Tbx20 and Nkx2–5, causes severe cardiac anomalies, revealing an essential allelic balance between Brg1 and these cardiac transcription factor genes. This suggests that the relative levels of transcription factors and BAF complexes are important for heart development, which is supported by reduced occupancy of Brg1 at cardiac gene promoters in Tbx5 haploinsufficient hearts. Our results reveal complex dosage-sensitive interdependence between transcription factors and BAF complexes, providing a potential mechanism underlying transcription factor haploinsufficiency, with implications for multigenic inheritance of CHDs

    Pipeline for Large-Scale Microdroplet Bisulfite PCR-Based Sequencing Allows the Tracking of Hepitype Evolution in Tumors

    Get PDF
    Cytosine methylation provides an epigenetic level of cellular plasticity that is important for development, differentiation and cancerogenesis. We adopted microdroplet PCR to bisulfite treated target DNA in combination with second generation sequencing to simultaneously assess DNA sequence and methylation. We show measurement of methylation status in a wide range of target sequences (total 34 kb) with an average coverage of 95% (median 100%) and good correlation to the opposite strand (rho = 0.96) and to pyrosequencing (rho = 0.87). Data from lymphoma and colorectal cancer samples for SNRPN (imprinted gene), FGF6 (demethylated in the cancer samples) and HS3ST2 (methylated in the cancer samples) serve as a proof of principle showing the integration of SNP data and phased DNA-methylation information into “hepitypes” and thus the analysis of DNA methylation phylogeny in the somatic evolution of cancer
    corecore