13 research outputs found

    Population genomics of the Wolbachia endosymbiont in Drosophila melanogaster

    Get PDF
    Wolbachia are maternally-inherited symbiotic bacteria commonly found in arthropods, which are able to manipulate the reproduction of their host in order to maximise their transmission. Here we use whole genome resequencing data from 290 lines of Drosophila melanogaster from North America, Europe and Africa to predict Wolbachia infection status, estimate cytoplasmic genome copy number, and reconstruct Wolbachia and mtDNA genome sequences. Complete Wolbachia and mitochondrial genomes show congruent phylogenies, consistent with strict vertical transmission through the maternal cytoplasm and imperfect transmission of Wolbachia. Bayesian phylogenetic analysis reveals that the most recent common ancestor of all Wolbachia and mitochondrial genomes in D. melanogaster dates to around 8,000 years ago. We find evidence for a recent incomplete global replacement of ancestral Wolbachia and mtDNA lineages, which is likely to be one of several similar incomplete replacement events that have occurred since the out-of-Africa migration that allowed D. melanogaster to colonize worldwide habitats.Comment: 41 pages, 5 figure

    A unique cluster of roo insertions in the promoter region of a stress response gene in Drosophila melanogaster

    No full text
    Transposable elements (TEs) are not randomly distributed in the genome. A genome-wide analysis of the D. melanogaster genome found that differences in TE density across 50 kb genomic regions was due both to transposition and duplication. At smaller genomic scales, promoter regions of hsp genes and the promoter region of CG18446 have been shown to accumulate TE insertions. In this work, we have further analyzed the promoter region of CG18446. We screened 218 strains collected in 15 natural populations, and we found that the CG18446 promoter region contains 20 independent roo insertions. Based on phylogenetic analysis, we suggest that the presence of multiple roo insertions in this region is likely to be the result of several bursts of transposition. Moreover, we found that the roo insertional cluster in the CG18446 promoter region is unique: no other promoter region in the genome contains a similar number of roo insertions. We found that, similar to hsp gene promoters, chromatin accessibility could be one of the factors explaining the recurrent insertions of roo elements in CG18446 promoter region.This work was funded by the European Commission (H2020-ERC-2014-CoG-647900). C.I. was funded by an ERASMUS+ fellowship. We acknowledge the support of the Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de laGeneralitat de Catalunya (GRC 2017 SGR 880). We also acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI)
    corecore