92 research outputs found

    The cAMP pathway is important for controlling the morphological switch to the pathogenic yeast form of Paracoccidioides brasiliensis

    Get PDF
    Paracoccidioides brasiliensis is a human pathogenic fungus that switches from a saprobic mycelium to a pathogenic yeast. Consistent with the morphological transition being regulated by the cAMP-signalling pathway, there is an increase in cellular cAMP levels both transiently at the onset (< 24 h) and progressively in the later stages (> 120 h) of the transition to the yeast form, and this transition can be modulated by exogenous cAMP. We have cloned the cyr1 gene encoding adenylate cyclase (AC) and established that its transcript levels correlate with cAMP levels. In addition, we have cloned the genes encoding three Gα (Gpa1–3), Gβ (Gpb1) and Gγ (Gpg1) G proteins. Gpa1 and Gpb1 interact with one another and the N-terminus of AC, but neither Gpa2 nor Gpa3 interacted with Gpb1 or AC. The interaction of Gpa1 with Gpb1 was blocked by GTP, but its interaction with AC was independent of bound nucleotide. The transcript levels for gpa1, gpb1 and gpg1 were similar in mycelium, but there was a transient excess of gpb1 during the transition, and an excess of gpa1 in yeast. We have interpreted our findings in terms of a novel signalling mechanism in which the activity of AC is differentially modulated by Gpa1 and Gpb1 to maintain the signal over the 10 days needed for the morphological switch

    Biophysics of Malarial Parasite Exit from Infected Erythrocytes

    Get PDF
    Upon infection and development within human erythrocytes, P. falciparum induces alterations to the infected RBC morphology and bio-mechanical properties to eventually rupture the host cells through parasitic and host derived proteases of cysteine and serine families. We used previously reported broad-spectrum inhibitors (E64d, EGTA-AM and chymostatin) to inhibit these proteases and impede rupture to analyze mechanical signatures associated with parasite escape. Treatment of late-stage iRBCs with E64d and EGTA-AM prevented rupture, resulted in no major RBC cytoskeletal reconfiguration but altered schizont morphology followed by dramatic re-distribution of three-dimensional refractive index (3D-RI) within the iRBC. These phenotypes demonstrated several-fold increased iRBC membrane flickering. In contrast, chymostatin treatment showed no 3D-RI changes and caused elevated fluctuations solely within the parasitophorous vacuole. We show that E64d and EGTA-AM supported PV breakdown and the resulting elevated fluctuations followed non-Gaussian pattern that resulted from direct merozoite impingement against the iRBC membrane. Optical trapping experiments highlighted reduced deformability of the iRBC membranes upon rupture-arrest, more specifically in the treatments that facilitated PV breakdown. Taken together, our experiments provide novel mechanistic interpretations on the role of parasitophorous vacuole in maintaining the spherical schizont morphology, the impact of PV breakdown on iRBC membrane fluctuations leading to eventual parasite escape and the evolution of membrane stiffness properties of host cells in which merozoites were irreversibly trapped, recourse to protease inhibitors. These findings provide a comprehensive, previously unavailable, body of information on the combined effects of biochemical and biophysical factors on parasite egress from iRBCs.Singapore. Agency for Science, Technology and ResearchSingapore-MIT AllianceGlobal Enterprise for Micro-Mechanics and Molecular MedicineNational University of SingaporeNational Institutes of Health (U.S.) (Grant R01 HL094270-01A1)National Institutes of Health (U.S.) (Grant 1-R01-GM076689-01)National Institutes of Health (U.S.) (P41-RR02594-18-24

    The crystal structure of the Sgt1-Skp1 complex: the link between Hsp90 and both SCF E3 ubiquitin ligases and kinetochores

    Get PDF
    The essential cochaperone Sgt1 recruits Hsp90 chaperone activity to a range of cellular factors including SCF E3 ubiquitin ligases and the kinetochore in eukaryotes. In these pathways Sgt1 interacts with Skp1, a small protein that heterodimerizes with proteins containing the F-box motif. We have determined the crystal structure of the interacting domains of Saccharomyces cerevisiae Sgt1 and Skp1 at 2.8 Å resolution and validated the interface in the context of the full-length proteins in solution. The BTB/POZ domain of Skp1 associates with Sgt1 via the concave surface of its TPR domain using residues that are conserved in humans. Dimerization of yeast Sgt1 occurs via an insertion that is absent from monomeric human Sgt1. We identify point mutations that disrupt dimerization and Skp1 binding in vitro and find that the interaction with Skp1 is an essential function of Sgt1 in yeast. Our data provide a structural rationale for understanding the phenotypes of temperature-sensitive Sgt1 mutants and for linking Skp1-associated proteins to Hsp90-dependent pathways

    Plasmodium Protease ROM1 Is Important for Proper Formation of the Parasitophorous Vacuole

    Get PDF
    Apicomplexans are obligate intracellular parasites that invade host cells by an active process leading to the formation of a non-fusogenic parasitophorous vacuole (PV) where the parasite replicates within the host cell. The rhomboid family of proteases cleaves substrates within their transmembrane domains and has been implicated in the invasion process. Although its exact function is unknown, Plasmodium ROM1 is hypothesized to play a role during invasion based on its microneme localization and its ability to cleave essential invasion adhesins. Using the rodent malaria model, Plasmodium yoelii, we carried out detailed quantitative analysis of pyrom1 deficient parasites during the Plasmodium lifecycle. Pyrom1(-) parasites are attenuated during erythrocytic and hepatic stages but progress normally through the mosquito vector with normal counts of oocyst and salivary gland sporozoites. Pyrom1 steady state mRNA levels are upregulated 20-fold in salivary gland sporozoites compared to blood stages. We show that pyrom1(-) sporozoites are capable of gliding motility and traversing host cells normally. Wildtype and pyrom1(-) sporozoites do not differ in the rate of entry into Hepa1–6 hepatocytes. Within the first twelve hours of hepatic development, however, only 50% pyrom1(-) parasites have developed into exoerythrocytic forms. Immunofluorescence microscopy using the PVM marker UIS4 and transmission electron microscopy reveal that the PV of a significant fraction of pyrom1(-) parasites are morphologically aberrant shortly after invasion. We propose a novel function for PyROM1 as a protease that promotes proper PV modification to allow parasite development and replication in a suitable environment within the mammalian host
    corecore