261 research outputs found

    A comparative analysis of β-mannanases of bacteria from Antarctica and Malaysia

    Get PDF
    β-mannanase is an enzyme that is commonly expressed in environmental bacteria. It degrades hemicellulose found in plant material and recycles nutrients back into the environment. Because this enzyme significantly contributes to biodegradation and has recently been applied in industry, we conducted a comparative analysis of bacterial isolates found in soil samples from Schirmacher Oasis, Antarctica, and Sabah, Malaysia that were capable of degrading mannan. A total of 9 bacterial isolates from Antarctica and 30 bacterial isolates from Malaysia exhibited β-mannanase activity. These bacteria were differentiated and clustered using their random amplified polymorphic DNA (RAPD) profiles, and the β-mannanase activity of these isolates was tested at different temperatures and pH. Five out of 9 Antarctica isolates and seven out of 30 Malaysian isolates were identified based on their 16S rDNA sequences. Identified bacterial isolates from Antarctica were: MP1 (Bacillus amyloliquefaciens), MP2 (Bacillus pumilus), MP5 (Bacillus pumilus), A40 (Arthrobacter sp.), and C27 (Arthrobacter oxydans). Identified bacterial isolates from Malaysia were: Y1 (Paenibacillus sp.), Y2 (Bacillus sp.), Y16 (Paenibacillus sp.), Y18 (Paenibacillus sp.), A7 (Paenibacillus sp.), B26 (Streptomyces sp.), and D4 (Paenibacillus amylolyticus). β-mannanases produced by the Antarctica bacterial isolates MP1 (Bacillus amyloliquefaciens) and A40 (Arthrobacter sp.) were active at 5℃ and 20℃, respectively, while the β-mannanase produced by the bacterial isolate from Malaysia, A7 (Paenibacillus sp.), was active at 35℃

    A spatial model for social networks

    Full text link
    We study spatial embeddings of random graphs in which nodes are randomly distributed in geographical space. We let the edge probability between any two nodes to be dependent on the spatial distance between them and demonstrate that this model captures many generic properties of social networks, including the ``small-world'' properties, skewed degree distribution, and most distinctively the existence of community structures.Comment: To be published in Physica A (2005

    Large-scale evolutionary surveillance of the 2009 H1N1 influenza A virus using resequencing arrays

    Get PDF
    In April 2009, a new influenza A (H1N1 2009) virus emerged that rapidly spread around the world. While current variants of this virus have caused widespread disease, particularly in vulnerable groups, there remains the possibility that future variants may cause increased virulence, drug resistance or vaccine escape. Early detection of these virus variants may offer the chance for increased containment and potentially prevention of the virus spread. We have developed and field-tested a resequencing kit that is capable of interrogating all eight segments of the 2009 influenza A(H1N1) virus genome and its variants, with added focus on critical regions such as drug-binding sites, structural components and mutation hotspots. The accompanying base-calling software (EvolSTAR) introduces novel methods that utilize neighbourhood hybridization intensity profiles and substitution bias of probes on the microarray for mutation confirmation and recovery of ambiguous base queries. Our results demonstrate that EvolSTAR is highly accurate and has a much improved call rate. The high throughput and short turn-around time from sample to sequence and analysis results (30 h for 24 samples) makes this kit an efficient large-scale evolutionary biosurveillance tool

    Punctured polygons and polyominoes on the square lattice

    Full text link
    We use the finite lattice method to count the number of punctured staircase and self-avoiding polygons with up to three holes on the square lattice. New or radically extended series have been derived for both the perimeter and area generating functions. We show that the critical point is unchanged by a finite number of punctures, and that the critical exponent increases by a fixed amount for each puncture. The increase is 1.5 per puncture when enumerating by perimeter and 1.0 when enumerating by area. A refined estimate of the connective constant for polygons by area is given. A similar set of results is obtained for finitely punctured polyominoes. The exponent increase is proved to be 1.0 per puncture for polyominoes.Comment: 36 pages, 11 figure

    Magnetic resonance imaging phantoms for quality-control of myocardial T1 and ECV mapping: specific formulation, long-term stability and variation with heart rate and temperature

    Get PDF
    Background: Magnetic resonance imaging (MRI) phantoms are routinely used for quality assurance in MRI centres; however their long term stability for verification of myocardial T1/ extracellular volume fraction (ECV) mapping has never been investigated. Methods: Nickel-chloride agarose gel phantoms were formulated in a reproducible laboratory procedure to mimic blood and myocardial T1 and T2 values, native and late after Gadolinium administration as used in T1/ECV mapping. The phantoms were imaged weekly with an 11 heart beat MOLLI sequence for T1 and long TR spin-echo sequences for T2, in a carefully controlled reproducible manner for 12 months. Results: There were only small relative changes seen in all the native and post gadolinium T1 values (up to 9.0 % maximal relative change in T1 values) or phantom ECV (up to 8.3 % maximal relative change of ECV, up to 2.2 % maximal absolute change in ECV) during this period. All native and post gadolinium T2 values remained stable over time with <2 % change. Temperature sensitivity testing showed MOLLI T1 values in the long T1 phantoms increasing by 23.9 ms per degree increase and short T1 phantoms increasing by 0.3 ms per degree increase. There was a small absolute increase in ECV of 0.069 % (~0.22 % relative increase in ECV) per degree increase. Variation in heart rate testing showed a 0.13 % absolute increase in ECV (~0.45 % relative increase in ECV) per 10 heart rate increase. Conclusions: These are the first phantoms reported in the literature modeling T1 and T2 values for blood and myocardium specifically for the T1mapping/ECV mapping application, with stability tested rigorously over a 12 month period. This work has significant implications for the utility of such phantoms in improving the accuracy of serial scans for myocardial tissue characterisation by T1 mapping methods and in multicentre work

    Identification of myocardial diffuse fibrosis by 11 heartbeat MOLLI T1 mapping: averaging to improve precision and correlation with collagen volume fraction

    Get PDF
    Objectives: Our objectives involved identifying whether repeated averaging in basal and mid left ventricular myocardial levels improves precision and correlation with collagen volume fraction for 11 heartbeat MOLLI T1 mapping versus assessment at a single ventricular level. Materials and methods: For assessment of T1 mapping precision, a cohort of 15 healthy volunteers underwent two CMR scans on separate days using an 11 heartbeat MOLLI with a 5(3)3 beat scheme to measure native T1 and a 4(1)3(1)2 beat post-contrast scheme to measure post-contrast T1, allowing calculation of partition coefficient and ECV. To assess correlation of T1 mapping with collagen volume fraction, a separate cohort of ten aortic stenosis patients scheduled to undergo surgery underwent one CMR scan with this 11 heartbeat MOLLI scheme, followed by intraoperative tru-cut myocardial biopsy. Six models of myocardial diffuse fibrosis assessment were established with incremental inclusion of imaging by averaging of the basal and mid-myocardial left ventricular levels, and each model was assessed for precision and correlation with collagen volume fraction. Results: A model using 11 heart beat MOLLI imaging of two basal and two mid ventricular level averaged T1 maps provided improved precision (Intraclass correlation 0.93 vs 0.84) and correlation with histology (R2 = 0.83 vs 0.36) for diffuse fibrosis compared to a single mid-ventricular level alone. ECV was more precise and correlated better than native T1 mapping. Conclusion: T1 mapping sequences with repeated averaging could be considered for applications of 11 heartbeat MOLLI, especially when small changes in native T1/ECV might affect clinical management
    corecore