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1. Introduction 

1.1 Enzymatic sensory detection of sterigmatocystin 
The development of fast and sensitive sensor for mycotoxins’ detection has drawn a great 
attention in resent years (Prieto-Simom, B. et al., 2007). However, to construct anti-
interference biosensor for the practical samples is still challenge.  
Sterigmatocystin, a biogenic precursor of aflatoxin B1, has been classified as group 2B by the 
International Agency for Research on Cancer (IARC). Its chemical structure consists of a 
xanthone nucleus attached to bisfuran and it bears a close structural similar to aflatoxin B1 
(Fig. 1) (Versilovskis et al., 2008). The toxicity of sterigmatocystin is primarily confined to 
the liver and kidney and closely correlated to the occurrence of hepatocellular carcinoma, 
gastric carcinoma and esophagus carcinoma (Purchase & van der Watt, 1970). 
Contamination of cereals with Aspergillus fungi refers to harmfulness, due to the potential of 
sterigmatocystin production by these fungi. Sterigmatocystin is similar to aflatoxin B1 both 
in the carcinogenicity and fluorescence excitability. While the fluorescence of 
sterigmatocystin is not so strong as aflatoxin B1 and the sterigmatocystin-antibody not 
commercially available, the detection of sterigmatocystin is harder or/and cost more. 
Several methods for the detection of sterigmatocystin have been established, including thin-
layer chromatography (TLC), high-performance liquid chromatography (HPLC), liquid 
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chromatography with mass spectrometry (LC-MS), gas chromatography with mass 
spectrometry (GC-MS), high-performance liquid chromatography–tandem mass 
spectrometry (LC-MS/MS) (Versilovskis et al., 2007; Turner et al., 2009;). Although accurate 
and sensitive, most of the chromatographic methods are often considered laborious and 
time intensive, requiring expensive equipments and extended cleanup steps. Therefore, 
developing a rapid and sensitive method for sterigmatocystin detection is urgently needed. 
Due to the advantages of enzymatic recognition which offer the response signal with diplex 
recognitions: the selective binding coupled with the catalytic action of the enzyme toward 
its substrate, the false results might occur less compared with immuno-sensor or ELISA 
(enzyme-linked immunosorbent assay) methods which has been concerned the false results 
(Lim et al., 2007; Massart et al., 2008; DeForge et al., 2010).  
Aflatoxin-oxidase (AFO), confirmed to possess oxidation activity toward sterigmatocystin, 
was utilized as bio-recognition element to constructing the enzymatic biosensor for 
sterigmatocystin detection. Our previously reported AFO biosensors for fast detection of 
sterigmatocystin have indicated their potential practicability (Yao et al., 2006; Chen et al., 
2010). However, to develop anti-interference enzymatic biosensor for the practical food 
samples is an arduous target. Recently, we have developed a Prussian blue-base AFO 
biosensor which revealed effective anti-interferent quality (detailed investigations are going 
to be published else where). Prussian blue, a prototype of mixed-valence transition metal 
hexacyanoferrates, has been extensively used as an electrontransfer mediator in 
amperometric biosensors due to its excellent electrocatalysis toward the reduction of 
hydrogen peroxide (Karyakin et al., 1994; Ricci & Palleschi, 2005; Zhao et al., 2005; Ricci et 
al., 2007; Liu et al., 2009). Because of its selective catalysis of hydrogen peroxide in the 
presence of oxygen and other interferents, Prussian blue is regarded as “artificial 
peroxidase” (Itaya et al., 1984; Karyakin et al., 1998, 1999, 2000; Karyakin & Karyakina, 
1999). The extremely low applied potential of 0.0 V and effectively perselective barrier effect 
of the Prussian blue - chitosan composite were supposed to be a major attribution towards 
the interferents from real samples. Here reports the procedure of the biosensor (chitosan – 
AFO - Single wall carbon nanotubes / Prussian blue – chitosan / L-Cysteine / Au) 
construction and the results for the sensor’s practical use.   
 

 

Fig. 1. Chemical structures of sterigmatocystin (A) and aflatoxin B1 (B). 

1.2 Predictive detection of aflatoxins 
The prompt and fast method is valuable for food safety and feed. However, the early 
awareness may be more informative for both consumers and producers. Versicolorin A is 
the first compound having the toxic bisfuran structure in biosynthesis of aflatoxin B1. The 
possibility and feasibility to predict the contamination of aflatoxin B1 using versicolorin A as 
the indicator have been reported in the present chapter, also.  
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Aflatoxins are secondary metabolites produced by filamentous fungi Aspergillus, 
particularly flavus and parasiticus, which are ubiquitous and can grow extensively in crops 
and their products. The carcinogenic and immuno-suppresant toxicity of aflatoxins is a 
serious health risk both to human beings and animals. Among the aflatoxins variants, 
aflatoxin B1 is the most toxic and is strictly controlled under food and feed safety regulations 
in many countries. As is known, mycotoxins may occur at any stage of crops’ growth, 
harvest, storage, transport and marketing. The “fast detection” is still not fast enough to 
assure life safety and diminish the economic loss since the detection is “after-event” 
(detectable after the contamination occurred). Development of pre-alert or early-awareness 
methods has aroused general interests, especially in a time of constant climate changes and 
food and feed shortage. There is an extensive demand to develop methods for the early 
identification of emerging hazards to food safety (Concina et al., 2009; Kleter & Marvin, 
2009; Marvin & Kleter, 2009).  
Biosynthesis of aflatoxins is a complex process (Fig. 2) (Shier et al., 2005), with more than 20 
genes involved. Yu ( Woloshuk et al., 1994; Yu et al., 1995) revealed that most of these genes 
were located on the aflR gene (aflatoxin biosynthetic pathway regulatory gene), and that 
their physical order and distance is highly correlated to the aflatoxin biosynthetic pathway. 
This gene cluster has been further investigated and expanded (Yu et al., 2004). 
 

 

Fig. 2. Presumed biosynthetic pathway of aflatoxin by Shier et al., 2005 

It has been proposed that aflatoxicosis is caused by the oxidation of the bisfuran group on 
aflatoxin B1 and its variants to yield the ultimate carcinogen aflatoxin B1-exo-8,9-epoxide in 
the liver (Jones & Stone, 1998; Smela et al., 2002). Versicolorin A, a precursor of aflatoxin B1 
in the biosynthetic pathway of aflatoxins (Ehrlich et al., 2003; Woloshuk et al., 1994; Yu et al., 
1995, 2004), is a member of this toxic group of bisfurans along with its succeeding 
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metabolites sterigmatocystin and aflatoxin B1. Versicolorin A, the metabolic precursor of 
aflatoxin B1, was first separated by Lee (Lee et al., 1975) in a mutant strain of Aspergillus 
parasiticus named Aspergillus versicolor. Its molecular formula is C18H10O7 with a molecular 
weight of 338. Its physical and chemical properties have been fully characterized (Lee et al., 
1975; Shier et al., 2005). Some paper have reported the positive mutagenicity of Versicolorin 
A, and Versicolorin A has shown less mutagenic than aflatoxin B1 (about 1.5% or 5% toxic of 
aflatoxin B1) in Ames test. However, incomprehensive reports of the toxicity of 
Versicoloring A had been published ( Wong et al., 1977; Dunn et al., 1982; Mori et al., 1985), 
thus we looked for the minimum dose of Versicoloring A mutagenicity using Ames tests 
with four tester strains and a human peripheral lymphocytes test. 
As mentioned above, in the aflatoxin B1 biosynthesis procedures versicolorin A is a key 
precursor and far away from the end product of aflatoxin B1 with a lower toxicity. 
Versicolorin A might be a candidate indicator for pre-alert of aflatoxin B1 pollution. This 
study expands report of versicolorin A and aflatoxin B1 levels in pure cultures of A. flavus 
and A. parasiticus on different culture media, A. parasiticus inoculated white rice, and local 
(Guangdong province, China) commercial feed samples. To evaluate whether versicolorin A 
is feasible to pre-alert aflatoxin B1 pollution, 34 feed samples (corn dregs) previously 

considered safe (aflatoxin B1  25 g/kg, China regulation [GB13078-2001]) but with a high 

level of versicolorin A ( 50 g/kg) were chosen. The storage tests were performed. The 
final aflatoxin B1 was determined and the relationships between original versicolorin A and 
the final aflatoxin B1 have been analyzed. 

2. Materials and methods 

2.1 Enzymatic sensory detection of sterigmatocystin 
2.1.1 Chemicals 
Sterigmatocystin and L-Cysteine were obtained from Sigma-Aldrich Co. (St. Louis. USA). 
Single wall carbon nanotubes (SWCNTs) (95% purity) were purchased from Shenzhen 
Nanotech Port Co. (Shenzhen, China). Chitosan (CS) (95% deacetylation,) and other 
chemicals were of analytical grade without further purification. Phosphate buffer solution 
(PBS, 0.05 M) consisting of K2HPO4, KH2PO4 and 0.1 M KCl was employed as supporting 
electrolyte. The double-distilled water was used throughout. The preparation of aflatoxin-
oxidase (AFO) followed a similar procedure according to the literature (Liu et al., 2001), and 
with corresponding specific enzyme activity of 320 U/mg (1 U was equal to the amount of 
enzyme that can decrease 1 nmol of sterigmatocystin per minute). Measurements were 
performed using CHI660C electrochemical workstation (CH Instrument, USA). The 
electrochemical system consists of gold working electrode, a platinum wire as the auxiliary 
electrode, and an Ag/AgCl (saturated with KCl) electrode as the reference electrode. All 
experiments were conducted at room temperature in a 10 ml electrochemical cell with 
respect to Ag/AgCl. The amplitude of the applied sine wave potential was 5 mV, with a 
formal potential 0.24 V. The current-time curves were recorded at 0.0 V under stirring. 

2.1.2 Preparation of sterigmatocystin biosensor 
Gold electrodes (2 mm in diameter, CH Instruments Inc.) were cleaned following the 
reported protocol (Zhang et al., 2007) and then rinsed with water. After flowing dry with 
nitrogen, electrodes were immediately immersed into 0.02 M L-Cysteine solutions for 6 h at 
4 ºC to form self-assembly monolayer modified electrode. Extensively washed with water to 
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remove the unbound L-Cysteine (Cys), the self-assembly monolayer modified electrodes 
were denoted as Cys/Au. A 0.2 wt.% CS solution was prepared by dissolving chitosan (CS) 
powder in 1% (V/V) acetic acid solution with magnetic stirring for about 2 h followed with 
filter removal of the undissolved particles and adjusting the pH to 5.5 with condense NaOH. 
The prepared and CS solution was then stored in 4 ºC. The Prussian blue-chitosan (PB-CS) 
hybrid film was deposited onto the Cys/Au modified electrode according to the following 
four steps: 
1. Preparation of the film: A PB-CS solution consisting of 2.5 mM K3[Fe(CN)6], 2.5 mM 

FeCl3, 0.1 M KCl, 0.1 M HCl, and 0.01% CS was deoxygenated by purging high-purity 

nitrogen for 10 min. PB-CS was then electrodeposited onto Cys/Au by applying a 

constant potential of 400 mV (vs. Ag/AgCl) for 40 s. 

2. Activation of the film: The PB-CS layer was then further activated in an electrolyte 

solution containing 0.1 M KCl and 0.1 M HCl, which was used for film growth by 

successive cyclic scanning from -50 mV to 350 mV for 30 cycles at 50 mV/s. 

3. Drying of the film: After carefully rinsed with doubly distilled water, the modified 

electrode was then baked at 100 ºC for 1 h since it was reported in the literature (Ricci et 

al., 2003) that a more stable and active layer of Prussian blue (PB) could be obtained 

with 1 h baking at 100ºC.  

4. Conditioning of the film: A potential of -50 mV was applied for 600 s in 0.05 M PBS 

consisting of K2HPO4, KH2PO4 and 0.1 M KCl (pH 6.5). And then a 20 cycles of scan 

from -50 mV to 350 mV at 50 mV/s was followed. 

After the four steps procedure, the electrode, constructed with PB-CS electrically depositing 
onto Cys/Au modified electrode, was referred to as PB-CS/Cys/Au electrode. For the 

enzyme biosensor, the modification was carried out by dropping 10 l of an aqueous 
suspension containing 0.5 mg/ml carboxylated single wall carbon nanotubes (SWCNTs), 2.5 
mg/ml aflatoxin-oxidase (AFO), and 0.2 wt.% CS on the PB-CS/Cys/Au electrode. Before 
used, SWCNTs were carboxylated in a 3:1 (V/V) mixture of concentrated H2SO4/HNO3 
with sonication at 60 ºC according to the literature (Zhang et al., 2008). The AFO-modified 
electrode (referred to as CS-AFO-SWCNTs/PB-CS/Cys/Au) was then dried at 4 ºC in a 
refrigerator for 24 h. The enzyme electrodes must be washed thoroughly with PBS before 
experiments and store at 4 ºC when not in use. 

2.1.3 Rice samples preparation 
Non-infected rice sample (purchased from the local market) was first grounded in a 
household blender. Aliquots (0.5 g) of the rice powder were then spiked with 
sterigmatocystin at different concentrations and mixed in a vortex mixer. After adding 4 ml 
of extraction solvent (80% methanol), the sample was fully mixed by shaking for 30 min, and 
then, centrifuged at 6000 g for 10 min at 4 ºC. The supernatant was carefully removed and 
diluted with PBS (1:10, V/V) for further analysis.  

2.1.4 Safety conditions 
Sterigmatocystin is a very potent carcinogen, so great care should be taken to avoid personal 
exposure. It is necessary to wear lab dresses, gloves, and mask when doing experiments. All 
laboratory glassware and consumables contaminated with sterigmatocystin were soaked 
overnight in a 5% sodium hypochlorite solution containing 5% acetone. The 
decontamination solution was allowed a minimum of 30 min before disposal. 
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2.2 Feasibility investigation on predictive detection of aflatoxin B1 
2.2.1 Preparation of pure versicolorin A 
Aspergillus versicolor ATCC 36537 (Lee et al., 1975) (purchased from ATCC) was regenerated 
on slants under 24 ºC in darkness according to the product manual. After 5d activation in 
liquid growth medium (malt extract 20g, glucose 20g, peptone 1g, distilled water 1L) twice, 
it was cultured in YES medium (sucrose 200g, yeast extract 20g, distilled water 1L) at 24 ºC 
in darkness without agitation for 7-10d for versicolorin A production. The mycelial mass 
was extracted with acetone until colorless and the combined extracts were filtered, dried 
with anhydrous sodium sulfate and evaporated to dryness at 50 ºC in a rotary evaporator. 
For each 1L culture, 10ml petroleum ether and 250ml 30% acetone-water was added to re-
dissolve the residue and transferred to a separatory funnel, followed by partitioning with 
100ml hexane thrice. Finally, the hexane partition was pooled and evaporated at 50 ºC until 
dryness and the residue was dissolved in 20ml methanol and stored at 4 ºC in darkness. 
Crude versicolorin A was further purified by preparative HPLC (Billington & Hsieh, 1989) 

using 95: 5 methanol: water at a constant flow of 10ml/min on a 50×250mm 10m Agilent 
Prep-C18 column mounted on Agilent 1100 series installed with a DAD detector. 
Versicolorin A was eluted at 18.432min detected by absorbance at 214nm and 290nm. Pure 
versicolorin A was lyophilized and stored at -20 ºC in darkness. Pure versicolorin A powder 
was re-dissolved in methanol and verified by LC-MS when in use. 

2.2.2 Mutagenicity tests 
Ames tests with Salmonella typhimurium TA97, TA98, TA100 and TA102 tester strains and the 
human peripheral lymphocytes test were carried out with pure Versicoloring A in the 
Guangzhou Disease Prevention and Control Center, Guangzhou, China. In the Ames tests, 
we used the positive controls of 50μg/plate Dexon in the TA97 and TA98 tests, 1.5μg/plate 
NaN3 in the TA100 test, and 0.5μg/plate Mitomycin C in the TA102 test in the absence of S9 
mix; for S9+ tests, 10μg/plate 2-aminofluorene served as positive control in the TA97, TA98 
and TA100 tests, and 60μg/plate Chrysazin in the TA102 test. The experiment group 
consisted of Versicoloring A at variable concentrations of, 20.0, 10.0, 5.0 and 2.5 μg/plate. A 
blank control and a negative control of DMSO were also included. Experiments were 
repeated twice in triplicate. The TA98 test was repeated twice in triplicate with 
Versicoloring A concentrations of 0.8, 0.6 and 0.4 μg/plate. 
In the human peripheral lymphocytes test, Versicoloring A concentrations of 1.6, 0.8, 0.4 0.2 
and 0.1 μg/mL were used with peripheral lymphocytes of 8 healthy patients in parallel. A 
blank control, a negative control of DMSO and a positive control of 40μg/mL Mitomycin C 
were also included. 

2.2.3 Detection of versicolorin A and aflatoxin B1 production time course in pure 
medium cultures 
Pure cultures of A. flavus and A. parasiticus on different culture media were studied. The 
three media used were: CAO (sucrose 30g, MgSO4 0.5g, FeSO4 0.01g, K2HPO4 1g, NaNO3 3g, 
KCl 0.5g, distilled water 1L), YES (as described above) and PG (peptone 100g, glucose 10g, 
distilled water 1L). 1ml 1.0 x 106 CFU/ml A. flavus or A. parasiticus spore suspension fluid 
was inoculated in 100ml liquid medium and cultured at 28 ºC without agitation in darkness. 
Toxins were extracted according to a protocol previously described by Bennett (Lee et al., 
1975, 1976; Bennett et al., 1976). TLC developed by toluene: ethyl acetate: glacial acetic acid 
at a ratio of 50:30:4 (V/V/V) on a 12×12cm silica plate was used for detecting metabolites in 
crude extract with reference to reported Rf values (Shier et al., 2005). 
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2.2.4 Detection of versicolorin A and aflatoxin B1 production time course in 
contaminated white rice 

Versicolorin A and aflatoxin B1 was detected in pure cultures of A. parasiticus on white rice 

by thin layer chromatography (TLC) or high performance liquid chromatography (HPLC). 

Commercial bulk white rice was purchased in a supermarket and exposed to UV prior to 

fungal contamination. 1ml of 1.0 x 106 CFU/ml A. parasiticus spore suspension fluid was 

inoculated on 20g rice. Culture conditions were indicated in the context or under the 

diagrams. Toxins were extracted and detected by TLC as described above. Otherwise, 

quantifications of crude samples were made with HPLC on 4.6×150mm 5m Shimadzu 

ODS-C18 column mounted on Shimadzu 6AD series installed with a DAD and fluorescence 

detector. 10l sample was loaded and eluted with solvent A (10mM ammonium acetate, 

20M sodium acetate in water) and solvent B (10mM ammonium acetate, 20M sodium 

acetate in methanol) by a two-step gradient of 85%B for 10min and 100%B for 10min 

respectively at a constant flow of 0.3mL/min. Versicolorin A was eluted at 23.163min 

detected by absorbance at 222nm and 288nm; aflatoxin B1 was eluted at 11.973min detected 

by fluorescence at an excitation wavelength of 365nm and an emission wavelength of 

435nm. 

2.2.5 Detection of versicolorin A and aflatoxin B1 on commercial feed samples  

A set of 100 animal feeds samples (corn dregs) were analyzed. Feed samples of 20g were 

crushed with blender. Aflatoxin B1 and versicolorin A were extracted and determined by 

HPLC procedures as 2.2.4 described. Data analyzed by using the statistic soft ware of 

SPSS13.0. 

2.2.6 Detection of the original versicolorin A and the after-storage aflatoxin B1 for the 
samples which concern safe originally 

Aflatoxin B1 in 200 feeds samples were determined by ELISA (Aflatoxin Tube Kit, Beacon, 

USA) according to instructions in the product manual. Those which aflatoxin B1 were not 

more than 25 g/kg were screened. And followed by the determination of versicolorin A by 

HPLC method described in 2.2.4. Thirty-four samples with high levels of versicolorin A  

( 50 g/kg) of them were chose for the following storage tests.   

The 34 chosen samples have divided into two groups. Seventeen samples of them were 

stored under darkness at 22 ± 2 ºC with relative humidity 70 ± 2% for 10 days, and the rest  

were stored under darkness at 28 ºC with 80% relative humidity for 4 days. After 

determinations of the final aflatoxin B1 and versicolorin A content by HPLC methods, data 

of versicolorin A and aflatoxin B1 before and after storage have been analyzed, and statistical 

soft ware of SPSS13.0 were used.  

3. Results and discussions 

3.1 Enzymatic sensory detection of sterigmatocystin 
3.1.1 Analytical performance of the enzyme electrode for sterigmatocystin detection 

Fig. 3 (A) shows the cyclic voltammograms of sterigmatocystin detected by CS–AFO– 
SWCNTs/PB–CS/Cys/Au electrode in 0.05 M PBS (pH 6.5) at a scan rate of 50 mV/s. With 
the addition of certain amount of sterigmatocystin, the cyclic voltammograms changed 
obviously with an increase in the cathodic peak current and a concomitant decrease in the 

www.intechopen.com



 
Aflatoxins – Detection, Measurement and Control 

 

168 

anodic peak current. The possible interferent usually appeared in drink and food samples 
were selected for interference studies to investigate the selectivity of the as-prepared 
biosensor. As shown in Fig. 3 (B), the biosensor shows no observable change of the response 
to 4 g/ml glucose, methanol, oleic acid, phenol, L-tryptophan, and ascorbic acid; in contrast, 
the biosensor exhibits very strong response to the successive addition of 20 ng/ml 
sterigmatocystin in the presence of the interfering substances. 
 

 
 

 

Fig. 3. (A) The cyclic voltammograms of CS-AFO-SWCNTs/PB-CS/Cys/Au electrode in 
0.05 M PBS (pH 6.5) in the presence of different concentration of sterigmatocystin (ST). Scan 
rate: 50 mV/s. (B) Amperometric current-time curve illustrating the interferences free 
sensing of ST at the proposed biosensor in 0.05 M pH 6.5 PBS. ST (20 ng/ml) and the 
potential interfering substances (4 g/ml) were added at regular intervals as indicated by the 
arrows. Applied potential: 0.0 V. 
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Fig. 4. (A)Typical amperometric current-time curve of CS-AFO-SWCNTs/PB-CS/Cys/Au 
electrode to successive addition different concentration of sterigmatocystin (ST) in 0.05 
mol/L pH 6.5 PBS at 0.0V. (B) The corresponding calibration curve of the electrode. 

Fig. 4 (A) shows the amperometric current-time responses of the biosensor on successive 
step changes of sterigmatocystin concentration in a continuous stirring electrolytic cell at 0.0 
V. As Fig. 4 (B) shown, the response current increased linearly with the sterigmatocystin 
concentration in the range of 10 to 950 ng/ml (correlation coefficient of 0.9985) with a 
sensitivity of 2.64 Ag-1mlcm-2 and a detection limit of 2 ng/ml (S/N=3). The 95% of the 
steady-state current can be obtained within 8 s by using the CS-AFO-SWCNTs/PB-CS/ 
Cys/Au electrode, indicating a fast response to sterigmatocystin change. 
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3.1.2 Rice samples analysis with enzymatic sensor 
The bioelectrode has been used to determine the recoveries of 15 various concentrations of 
sterigmatocystin by standard addition in real corn samples. As Table 1 shown, satisfactory 
values between 82.0 and 115.0 % for sterigmatocystin were obtained for the recovery. This 
biosensor electrode is convenient in use with quick response and trustworthy results. 
Besides this merit, the uncomplicated procedure of the sample preparation may also appeal 
to users.  
 

Sample 
number 

Added 
(ng/mL) 

Detected 
(ng/mL) 

R.S.D (%) Recovery (%) 

1 10 11.5 4.9 115.0 

2 15 13.2 9.2 88.0 

3 20 17.1 4.3 85.5 

4 25 21.4 6.4 85.6 

5 30 27.8 3.8 92.7 

6 35 28.7 4.5 82.0 

7 40 34.6 4.6 86.5 

8 45 47.9 8.3 106.4 

9 50 55.1 4.2 110.2 

10 60 62.2 5.8 103.7 

11 70 64.2 8.5 91.7 

12 80 73.9 10.8 92.4 

13 90 98.9 4.2 109.9 

14 100 97.2 10.6 97.2 

15 150 161.7 8.6 107.8 

Table 1. The detection of sterigmatocystin in rice sample using CS-AFO-SWCNTs/PB-CS/ 
Cys/Au electrode. The data reported in the table represents the average of four measure- 
ments. 

3.2 Feasibility investigation on predictive detection of aflatoxin B1 
3.2.1 Versicolorin A and aflatoxin B1 content time course for the pure culture of  
A. flavus and A. parasiticus 
Pure cultures of A. flavus and A. parasiticus on different culture media revealed that 
versicolorin A can be detected in significant amounts after 7d while aflatoxin B1 might not, 
depending on the culture conditions (Table 2). Similarly, versicolorin A and aflatoxin B1 
production in pure cultures of A. parasiticus on white rice demonstrated that versicolorin A 
but not aflatoxin B1 was detected in early fungal contamination using TLC (Fig.5-1 and 5-2). 
However, analysis by HPLC revealed the existence of both metabolites on Day 3. 
Additionally, the amount of aflatoxin B1 was significantly lower than that of versicolorin A 
in all samples (Fig. 6). Furthermore, HPLC analysis of versicolorin A and aflatoxin B1 in 
commercial animal feeds demonstrated the same phenomena (Fig.7). 
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Fungus Medium 
Versicolorin A Aflatoxin B1 

Day 7 Day 10 Day 7 Day 10 

A. flavus 

CAO + + - - 

YES + + - - 

PG + + - - 

A. parasiticus 

CAO + + - - 

YES + + + + 

PG + + - + 

 “+” denotes positive and “-” denotes negative; detection limit for aflatoxin B1 is 5ng. 

Table 2. Results of versicolorin A and aflatoxin B1 production in pure cultures of A. flavus 
and A. parasiticus on different culture media incubated under 28 ºC and ambient humidity 
without agitation in darkness and detected by TLC. 

 

 

Fig. 5.1. Observation of versicolorin A and aflatoxin B1 production in pure cultures of A. 
parasiticus on white rice under 35 ºC and ambient humidity in darkness over 14 days by 
TLC. Photographs of rice samples taken on Day 2 (A), Day 5 (B), Day 7 (C) and Day 14 (D) 
after fungus inoculation. 

 

 

Fig. 5.2. Observation of versicolorin A and aflatoxin B1 production in pure cultures of  
A. parasiticus on white rice under 35 ºC and ambient humidity in darkness over 14 days  
by TLC.  TLC detection of versicolorin A and aflatoxin B1 in rice samples on respective 
days indicated above after fungus inoculation. Experiments were performed in  
triplicate. 

www.intechopen.com



 
Aflatoxins – Detection, Measurement and Control 

 

172 

 

 

Fig. 6. Observation of versicolorin A and aflatoxin B1 production in pure cultures of A. 
parasiticus on white rice at 28 ºC and 80% relative humidity in darkness over 20d by HPLC. 
All experiments were performed in triplicate.  

 

 

Fig. 7. Detection of versicolorin A and aflatoxin B1 on commercial animal feeds by HPLC. 

3.2.2 Statistical analysis of versicolorin A and aflatoxin B1 
From the 100 feed samples data, it’s indicated that they are significantly logarithmic relative 
as Fig. 8 shown. 

 y =0.658x +1.240うy = lg Conc. AFB1, x = lg Conc.Ver Aえ        (Equation 1) 

R=0.637，Rsq=0.405，P<0.001  (by SPSS13.0 soft ware) 
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Analyses of versicolorin A and aflatoxin B1 in white rice contaminated with A. parasiticus and 
in commercial animal feeds purchased from the market revealed that the two metabolites were 
co-existent. We deduced that the observed phenomenon was caused by the immediacy in their 
biosynthesis and the heterogeneity of the fungal contamination. However, we could not rule 
out the possibility that aflatoxin B1 production lags behind versicolorin A in other 
circumstances because of the complex pathway of aflatoxin biosynthesis. In addition, our 
investigations on different culture conditions of A. flavus and A. parasiticus demonstrated that 
toxin production differs under different nutritional compositions and culture temperatures. It 
is apparent that the time relationship between sequential product of aflatoxin B1 metabolites 
depends on the choice of sample of interest and culture conditions.  
 

 

Fig. 8. Statistical analysis for content of versicolorin A and aflatoxin B1 (sample pool:100) 

In this study, pure cultures of A. flavus and A. parasiticus on different culture media revealed 
that versicolorin A was detected in significant amounts by TLC, but aflatoxin B1 might not be 
detected under the same culture conditions. HPLC analysis of A. parasiticus- contaminated 
white rice on different days after fungal inoculation showed that versicolorin A was detected 
in amounts 2 to 28 times higher than that of aflatoxin B1. Analysis of commercial 100 feed 
samples also showed that versicolorin A quantities were 1.2~59 times higher than that of 
aflatoxin B1. Therefore, it could be concluded that versicolorin A existed concurrently and in 
significantly higher amounts as compared to aflatoxin B1 in aflatoxin B1-positive samples. The 
content of versicolorin A has shown significant relative to the content of aflatoxin B1. 
Assays for determination of aflatoxins are diverse. Aflatoxin B1 is the major biomarker for 
aflatoxin contamination in food and feed. Aflatoxin B1 determination methods include TLC, 
HPLC, ELISA, etc (Turner et al., 2009). However, each of these methods has their pros and cons 
(Jiang et al., 2005). For instance, TLC is fast and convenient but the detection limit is high. HPLC 
is more suitable for quantification but chemical derivatization and fluorescence detectors are 
required for high sensitivity (Kok, 1994). Additionally, cleanup with affinity columns is 
essential for a majority of food and feed samples (Jiang et al., 2005). On the other hand, 
versicolorin A can be detected by simple HPLC coupled with fixed wavelength UV detector 
(222nm or 288nm, or both of them if DAD detector is available). Moreover, it was found to exist 
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concurrently and in significantly larger quantities than aflatoxin B1 in our studies. Thus, it offers 
the alternative to a sensitive and cost efficient indicator of aflatoxin contamination. 

3.2.3 The content changed for storage of versicolorin A and aflatoxin B1 
The seventeen chosen samples with aflatoxin B1 lower than 25ug/kg while versicolorin A 
more than 50ug/kg were stored under darkness with 22 ± 2 ºC and relative humidity 70 ± 
2% for 10 days. The content changed as shown by Fig. 9, 10. The trends of the decrease of 
versicolorin A with the increase of aflatoxin B1 after storage are clearly presented. 
 

 

Fig. 9. The content of versicolorin A before and after 10d storage (darkness with 22 ± 2 ºC  
and 70 ± 2% relative humidity) 

 

 

Fig. 10. The content of aflatoxin B1 before and after 10d storage (darkness with 22 ± 2 ºC  and 
70 ± 2% relative humidity)  
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3.2.4 Statistical analysis of the versicolorin A before storage and aflatoxin B1 after 
storage 
To reveal whether the versicolorin A content is meaningful of subsequent contamination of 
aflatoxin B1, statistical analysis of the original versicolorin A against with aflatoxin B1  after-
10d-storage (22 ± 2 ºC and 70 ± 2% relative humidity) has been performed. Results indicated 
that they are significantly relative in a negative reciprocal relationship shown as Fig. 12 and 
equation 2 display.  

 Conc. AFB1subs. =-2890.631 (1 / Conc.Ver Aori.) + 50.919     (Equation 2) 
R = 0. 791，Rsq = 0. 626   (by SPSS13.0 soft ware) 

 (10D storage with 22±2C and relative humidity 70±2%) 

Fig. 11 shows a threshold for the original versicolorin A about 67 g/kg. From the equation 

2, it can be calculated that if the original versicolorin A level were about 67 g/kg or 132 

g/kg, after 10d storage (darkness with 22 ± 2 ºC and 70±2% relative humidity) the aflatoxin 

B1 content were approximately 10 g/kg or 30 g/kg, respectively.  
 

 

 
 

Fig. 11. Statistical analysis of original versicolorin A and subsequent aflatoxin B1 after 10d 
storage (darkness with 22 ± 2 ºC and 70 ± 2% relative humidity)  

Another group of the same chosen samples have been investigated under the 4d storage at 
28 ºC with relative humidity 80% for. Results were showed in Fig. 12, 13 and equation 3. 
Under the fungi growth optimum condition (28 ºC with relative humidity 80%), the 
subsequent aflatoxin B1 showed a linear relationship with the original versicolorin A 
content.  
These storage investigation results suggested the contamination progress rate may be 
various depending on the storage conditions, and to investigate the content of original 
versicolorin A and subsequent aflatoxin B1 after-storage may reveal the various 
contamination pattern for a certain storage condition.   
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Fig. 12. The content of original versicolorin A and aflatoxin B1 before and after 4 days 
storage (darkness with 28 ºC and relative humidity 80%) 

 Con. AFB1 subs. = 0.216 Con.Ver Aori. - 4.731         (Equation 3) 
R=0.885, Rsq=0.784, P<0.001 (statistics significant) 

(For 4D storage with 28C and relative humidity 80%) 

 
 

 

Fig. 13. Statistical analysis for original content of versicolorin A and aflatoxin B1 before and 
after 4d storage (darkness with 28 ºC and relative humidity 80%) 
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3.2.5 Mutagenicity tests 
Results of the Ames tests with with Salmonella typhimurium TA97, TA98, TA100 and TA102 
tester strains demonstrated that VerA exhibited mutagenicity on the TA98 tester strains at 

the concentration of 0.6g/plate and above. (Figure 14).  
 

 

Fig. 14. Ames tests results of VerA with Salmonella typhimurium (A) TA97, (B) TA98 and 

(inset) at VerA concentrations between 5 and 0.4 g/plate, (C) TA100, and (D) TA102 tester 
strains. All experiments were repeated twice in triplicate.  

On the other hand, the human peripheral lymphocytes test indicated genotoxicity for VerA 

at the concentration of 1.6g/mL, which is 25 times of Mitomycin C (P<0.01) (shown as Fig. 
15). Hence, VerA may be confirmed to be a mutagen towards humanbeings. 

4. Conclusions 

4.1 Enzymatic sensory detection of sterigmatocystin 
Due to the low detection potential (0.0 V) and the role of selective recognition by the 
enzyme, the biosensor exhibited sensitive and creditable response in corn samples analysis 
with resistant to glucose, methanol, oleic acid, phenol, L-tryptophan and ascorbic acid. The 
sensor has given values of recovery in the range of 82.0% - 115.0% and RSD of 4.2% - 10.8% 
with a simple two-step sample-preparation of 80% methanol extraction followed by 
centrifugation.  
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Fig. 15. Photographs of the human peripheral lymphocytes test. (A) Human peripheral 
lymphocytes from 8 donors were incubated with different concentrations of pure VerA for 
24h and stained with 3% Giemsa. (B) A micronucleus-containing lymphocyte is indicated by 
the pointer. Nucleus was shown in red and cytosol in blue. 

4.2 Feasibility investigation on predictive detection of aflatoxin B1 
Based upon the results of this investigation, we conclude that versicolorin A may exist prior 

to or concurrent with aflatoxin B1. Although in other cases, in various cereals at diverse 

conditions, it would be rational to suggest that they are closely relative. In case of 

versicolorin A detected (even if aflatoxin B1 not found or at very low level) in some samples, 

to stop the storage is highly recommended and timely treatment is required.  

The mutagenicity test results manifested that Versicoloring A exhibited mutagenicity with the 

minimum VerA concentration causing mutagenicity in the study was 0.6g/plate at an 

induction factor of 3.4 as compared to the negative control. This value is lower than the 

minimum dose of 0.8g/plate reported previously (Wong et al., 1977). Nevertheless, 

Versicoloring A exhibited lower mutagenic effect as compared to 25ng/plate for AFB1 (Green et 

al., 1982). On the other hand, Versicoloring A induced significant micro-nuclei at the 

concentration of 1.6μg/mL in the human peripheral lymphocytes test, which is 25 times that of 

positive control Mitomycin C (P<0.01). Notwithstanding, it manifested mutagenicity in absence 

of S9 mix in concentration of 5.0 g/plate in the TA98 test, which implied Versicoloring A, 

when it is at a high concentration, may toxic without oxidative active by animal liver. 

Besides, with the known of mutagenetic toxicity of versicolorin A (Dunn et al., 1982; Mori et 

al., 1985), requisite detection of versicolorin A is recommended in food and feed safety 

regulatory guidelines. Versicolorin A should be considered in food and feed safety 

guidelines and could also be monitored as a prediction indicator of aflatoxin B1 

contamination. 
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