705 research outputs found

    Brown adipose tissue activation as measured by infrared thermography by mild anticipatory psychological stress in lean healthy females

    Get PDF
    Brown adipose tissue (BAT) has been implicated in the pathogenesis of obesity, type 2 diabetes and the metabolic syndrome and is a potential therapeutic target. Brown adipose tissue can have a significant impact on energy balance and glucose homeostasis through the action of uncoupling protein 1, dissipating chemical energy as heat following neuroendocrine stimulation. We hypothesized that psychological stress, which is known to promote cortisol secretion, would simultaneously activate BAT at thermoneutrality. Brown adipose tissue activity was measured using infrared thermography to determine changes in the temperature of the skin overlying supraclavicular BAT (TSCR). A mild psychological stress was induced in five healthy, lean, female, Caucasian volunteers using a short mental arithmetic (MA) test. The TSCR was compared with a repeated assessment, in which the MA test was replaced with a period of relaxation. Although MA did not elicit an acute stress response, anticipation of MA testing led to an increase in salivary cortisol, indicative of an anticipatory stress response, that was associated with a trend towards higher absolute and relative TSCR. A positive correlation between TSCR and cortisol was found during the anticipatory phase, a relationship that was enhanced by increased cortisol linked to MA. Our findings suggest that subtle changes in the level of psychological stress can stimulate BAT, findings that may account for the high variability and inconsistency in reported BAT prevalence and activity measured by other modalities. Consistent assessment of this uniquely metabolic tissue is fundamental to the discovery of potential therapeutic strategies against metabolic disease

    The effect of whole grain wheat sourdough bread consumption on serum lipids in healthy normoglycemic/normoinsulinemic and hyperglycemic/hyperinsulinemic adults depends on presence of the APOE E3/E3 genotype: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidemiological studies associate consumption of whole grain foods, including breads, with reduced cardiovascular disease (CVD) risk; however, few studies have compared wheat whole grains with wheat refined grains.</p> <p>Methods</p> <p>This study investigated effects of 6-week consumption of whole grain wheat sourdough bread in comparison to white bread on fasting serum lipids in normoglycemic/normoinsulinemic (NGI; n = 14) and hyperglycemic/hyperinsulinemic (HGI; n = 14) adults. The influence of single-nucleotide polymorphisms, 3 within the <it>APOE </it>gene (E2, E3, E4) and 2 within the hepatic lipase gene promoter (<it>LIPC </it>-514C>T, LIPC -250G>A) were considered.</p> <p>Results</p> <p>At baseline, HGI participants had significantly higher body weight, waist circumference, body fat, and fasted glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), glucagon, triacylglycerols (TAG) and TAG:HDL-cholesterol, compared to NGI participants; however, none of these in addition to none of the other serum lipids, differed between bread treatments, within either participant group. For participants with the <it>APOE </it>E3/E3 genotype, LDL-cholesterol (<it>P </it>= 0.02) increased in the NGI group (n = 7), and TAG (<it>P </it>= 0.03) and TAG:HDL-cholesterol (<it>P </it>= 0.04) increased in the HGI group (n = 10), following consumption of whole grain wheat sourdough compared to white bread.</p> <p>Conclusions</p> <p>In summary, 6-week consumption of whole grain wheat sourdough bread did not significantly modulate serum lipids in NGI or HGI adults; however, it significantly increased LDL-cholesterol, TAG and TAG:HDL-cholesterol in participants with the <it>APOE </it>E3/E3 genotype. These data add to limited literature comparing wheat whole grains to wheat refined grains on CVD risk and highlight the need to consider genetic variation in relation to lipoprotein lipid content and CVD risk.</p

    Estimating the Lactate Threshold Using Wireless Near-Infrared Spectroscopy and Threshold Detection Analyses

    Get PDF
    International Journal of Exercise Science 14(4): 284-294, 2021. The present investigation examined the ability of two threshold detection analyses (maximum distance, Dmax; modified maximum distance, mDmax) in identifying the near-infrared spectroscopy (NIRS) threshold, a lactate threshold (LT) estimate, from exercising tissue oxygen saturation (StO2) responses. Additionally, the test-retest reliability of exercising StO2 and total hemoglobin concentration (THC) responses were examined at moderate and peak cycling intensities. Fourteen healthy, recreationally active participants performed maximal incremental step cycling tests (+25 W / 3 minutes) to volitional fatigue on two separate occasions while StO2 and THC of the vastus lateralis were monitored. Exercising blood [lactate] was collected during Session One. LT and NIRS thresholds (NIRS1, NIRS2) were then determined using Dmax and mDmax threshold analyses. Significant (p \u3c 0.05), moderate correlations were detected between LT and NIRS1 when using Dmax (LT = 130 ± 49 W, NIRS1 = 136 ± 34 W, r = 0.690), but not for mDmax (r = 0.487). No significant test-retest reliability for the NIRS thresholds were observed for Dmax (ICC = 0.351) or mDmax (ICC = 0.385). Exercising StO2 responses demonstrated good reliability (ICC = 0.841-0.873) while exercising THC responses demonstrated moderate-good reliability (ICC = 0.720-0.873) at moderate and peak exercise intensities. The results of this study suggest that neither the Dmax nor mDmax threshold analyses should be used to estimate the LT due to the unreliable detection of the NIRS threshold from session to session

    Sexual dimorphism of brown adipose tissue function

    Get PDF
    ObjectiveTo determine whether brown adipose tissue (BAT) activity in school-age children differs between the sexes and to explore the impact of dietary intake, sedentary behavior, and picky/fussy eating.Study designChildren aged 8.5-11.8 years of age (n = 36) underwent infrared thermography to determine the temperature of the skin overlying the main superficial BAT depot in the supraclavicular region before and after 5 minutes of mild cold exposure (single-hand immersion in cool tap water at about 20°C). The relationships between the supraclavicular region temperature and parental reports of food consumption, eating behavior, and inactivity were explored.ResultsThe supraclavicular region temperature was higher in boys (n = 16) at baseline, and after cold exposure. Boys displayed a greater thermogenic response to cold. Strong negative correlations were observed between the supraclavicular region temperature and body mass index percentile, and differences in supraclavicular region temperature between girls and boys persisted after adjustment for body mass index percentile. A negative linear relationship was observed between protein and vegetable intake and supraclavicular region temperature in girls only, but did not persist after adjustment for multiple comparisons. There was no difference in the adjusted supraclavicular region temperature between active or inactive children, or picky and nonpicky eaters.ConclusionsThese findings indicate sexual dimorphism in BAT thermogenic activity and a sex-specific impact of diet. Future studies should aim to quantify the contribution of BAT to childhood energy expenditure, energy imbalance, and any role in the origins of childhood obesity

    Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes

    Get PDF
    CRISPR-Cas9 enables efficient sequence-specific mutagenesis for creating somatic or germline mutants of model organisms. Key constraints in vivo remain the expression and delivery of active Cas9- sgRNA ribonucleoprotein complexes (RNPs) with minimal toxicity, variable mutagenesis efficiencies depending on targeting sequence, and high mutation mosaicism. Here, we apply in vitro assembled, fluorescent Cas9-sgRNA RNPs in solubilizing salt solution to achieve maximal mutagenesis efficiency in zebrafish embryos. MiSeq-based sequence analysis of targeted loci in individual embryos using CrispRVariants, a customized software tool for mutagenesis quantification and visualization, reveals efficient biallelic mutagenesis that reaches saturation at several tested gene loci. Such virtually complete mutagenesis exposes loss-of-function phenotypes for candidate genes in somatic mutant embryos for subsequent generation of stable germline mutants. We further show that targeting of non-coding elements in gene regulatory regions using saturating mutagenesis uncovers functional control elements in transgenic reporters and endogenous genes in injected embryos. Our results establish that optimally solubilized, in vitro assembled fluorescent Cas9-sgRNA RNPs provide a reproducible reagent for direct and scalable loss-of-function studies and applications beyond zebrafish experiments that require maximal DNA cutting efficiency in vivo

    Thermal imaging is a non-invasive alternative to PET-CT for measurement of brown adipose tissue activity in humans

    Get PDF
    Background Obesity and its metabolic consequences are a major cause of morbidity and mortality. Brown adipose tissue (BAT) utilises glucose and free fatty acids to produce heat, thereby increasing energy expenditure. Effective evaluation of human BAT stimulators is constrained by current standard BAT assessment methods as positron emission tomography-computed tomography (PET-CT) requires exposure to high doses of ionising radiation. Infrared thermography (IRT) is a potential non-invasive, safe alternative, although direct corroboration with PET-CT has not previously been established. Methods IRT and 18F-fluorodeoxyglucose (¹⁸F-FDG) PET-CT data from 8 healthy male participants subjected to water jacket cooling were directly compared. Thermal images (TIs) were geometrically transformed to overlay PET-CT-derived maximum intensity projection (MIP) images from each subject and the areas of greatest intensity of temperature and glucose-uptake within the supraclavicular regions compared. Relationships between supraclavicular temperatures from IRT (TSCR) and the maximum rate of glucose uptake (MR(gluc)) from PET-CT were determined. Results Glucose uptake on MR(gluc)MIP was positively correlated with change in TSCR relative to a reference region (r² = 0.721; p=0.008). Spatial overlap between areas of maximal MR(gluc)MIP and maximal TSCR was 29.5±5.1%. Prolonged cooling to 60 minutes was associated with further TSCR rise compared with cooling to 10 minutes. Conclusions The supraclavicular hotspot identified on IRT closely corresponds to the area of maximal uptake on PET-CT-derived MR(gluc)MIP images. Greater increases in relative TSCR were associated with raised glucose uptake. IRT should now be considered a suitable method for measuring BAT activation, especially in populations where PET-CT is not feasible, practical or repeatable

    Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration

    Get PDF
    Peatlands have been subject to artificial drainage for centuries. This drainage has been in response to agricultural demand, forestry, horticultural and energy properties of peat and alleviation of flood risk. However, the are several environmental problems associated with drainage of peatlands. This paper describes the nature of these problems and examines the evidence for changes in hydrological and hydrochemical processes associated with these changes. Traditional black-box water balance approaches demonstrate little about wetland dynamics and therefore the science of catchment response to peat drainage is poorly understood. It is crucial that a more process-based approach be adopted within peatland ecosystems. The environmental problems associated with peat drainage have led, in part, to a recent reversal in attitudes to peatlands and we have seen a move towards wetland restoration. However, a detailed understanding of hydrological, hydrochemical and ecological process-interactions will be fundamental if we are to adequately restore degraded peatlands, preserve those that are still intact and understand the impacts of such management actions at the catchment scale

    GA4GH Phenopackets: A Practical Introduction.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) is developing a suite of coordinated standards for genomics for healthcare. The Phenopacket is a new GA4GH standard for sharing disease and phenotype information that characterizes an individual person, linking that individual to detailed phenotypic descriptions, genetic information, diagnoses, and treatments. A detailed example is presented that illustrates how to use the schema to represent the clinical course of a patient with retinoblastoma, including demographic information, the clinical diagnosis, phenotypic features and clinical measurements, an examination of the extirpated tumor, therapies, and the results of genomic analysis. The Phenopacket Schema, together with other GA4GH data and technical standards, will enable data exchange and provide a foundation for the computational analysis of disease and phenotype information to improve our ability to diagnose and conduct research on all types of disorders, including cancer and rare diseases
    corecore