127 research outputs found

    Cosmological Models and Latest Observational Data

    Full text link
    In this note, we consider the observational constraints on some cosmological models by using the 307 Union type Ia supernovae (SNIa), the 32 calibrated Gamma-Ray Bursts (GRBs) at z>1.4z>1.4, the updated shift parameter RR from WMAP 5-year data (WMAP5), and the distance parameter AA of the measurement of the baryon acoustic oscillation (BAO) peak in the distribution of SDSS luminous red galaxies with the updated scalar spectral index nsn_s from WMAP5. The tighter constraints obtained here update the ones obtained previously in the literature.Comment: 10 pages, 5 figures, 1 table, revtex4; v2: discussions added, accepted by Eur. Phys. J. C; v3: published versio

    Constraints on early dark energy from CMB lensing and weak lensing tomography

    Get PDF
    Dark energy can be studied by its influence on the expansion of the Universe as well as on the growth history of the large-scale structure. In this paper, we follow the growth of the cosmic density field in early dark energy cosmologies by combining observations of the primary CMB temperature and polarisation power spectra at high redshift, of the CMB lensing deflection field at intermediate redshift and of weak cosmic shear at low redshifts for constraining the allowed amount of early dark energy. We present these forecasts using the Fisher-matrix formalism and consider the combination of Planck-data with the weak lensing survey of Euclid. We find that combining these data sets gives powerful constraints on early dark energy and is able to break degeneracies in the parameter set inherent to the various observational channels. The derived statistical 1-sigma-bound on the early dark energy density parameter is sigma(Omega_d^e)=0.0022 which suggests that early dark energy models can be well examined in our approach. In addition, we derive the dark energy figure of merit for the considered dark energy parameterisation and comment on the applicability of the growth index to early dark energy cosmologies.Comment: 25 pages, 14 figures, 3 tables; v2: very minor additions, updated to match version to be published in JCA

    Reliability of fluctuation-induced transport in a Maxwell-demon-type engine

    Get PDF
    We study the transport properties of an overdamped Brownian particle which is simultaneously in contact with two thermal baths. The first bath is modeled by an additive thermal noise at temperature TAT_A. The second bath is associated with a multiplicative thermal noise at temperature TBT_B. The analytical expressions for the particle velocity and diffusion constant are derived for this system, and the reliability or coherence of transport is analyzed by means of their ratio in terms of a dimensionless P\'{e}clet number. We find that the transport is not very coherent, though one can get significantly higher currents.Comment: 14 pages, 5 figure

    The Crossing Statistic: Dealing with Unknown Errors in the Dispersion of Type Ia Supernovae

    Full text link
    We propose a new statistic that has been designed to be used in situations where the intrinsic dispersion of a data set is not well known: The Crossing Statistic. This statistic is in general less sensitive than `chi^2' to the intrinsic dispersion of the data, and hence allows us to make progress in distinguishing between different models using goodness of fit to the data even when the errors involved are poorly understood. The proposed statistic makes use of the shape and trends of a model's predictions in a quantifiable manner. It is applicable to a variety of circumstances, although we consider it to be especially well suited to the task of distinguishing between different cosmological models using type Ia supernovae. We show that this statistic can easily distinguish between different models in cases where the `chi^2' statistic fails. We also show that the last mode of the Crossing Statistic is identical to `chi^2', so that it can be considered as a generalization of `chi^2'.Comment: 14 pages, 5 figures. Paper restructured and extended and new interpretation of the method presented. New results concerning model selection. Treatment and error-analysis made fully model independent. References added. Accepted for publication in JCA

    QCD ghost f(T)-gravity model

    Full text link
    Within the framework of modified teleparallel gravity, we reconstruct a f(T) model corresponding to the QCD ghost dark energy scenario. For a spatially flat FRW universe containing only the pressureless matter, we obtain the time evolution of the torsion scalar T (or the Hubble parameter). Then, we calculate the effective torsion equation of state parameter of the QCD ghost f(T)-gravity model as well as the deceleration parameter of the universe. Furthermore, we fit the model parameters by using the latest observational data including SNeIa, CMB and BAO data. We also check the viability of our model using a cosmographic analysis approach. Moreover, we investigate the validity of the generalized second law (GSL) of gravitational thermodynamics for our model. Finally, we point out the growth rate of matter density perturbation. We conclude that in QCD ghost f(T)-gravity model, the universe begins a matter dominated phase and approaches a de Sitter regime at late times, as expected. Also this model is consistent with current data, passes the cosmographic test, satisfies the GSL and fits the data of the growth factor well as the LCDM model.Comment: 19 pages, 9 figures, 2 tables. arXiv admin note: substantial text overlap with arXiv:1111.726

    Observational constraint on generalized Chaplygin gas model

    Get PDF
    We investigate observational constraints on the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy from the latest observational data: the Union SNe Ia data, the observational Hubble data, the SDSS baryon acoustic peak and the five-year WMAP shift parameter. It is obtained that the best fit values of the GCG model parameters with their confidence level are As=0.730.06+0.06A_{s}=0.73^{+0.06}_{-0.06} (1σ1\sigma) 0.09+0.09^{+0.09}_{-0.09} (2σ)(2\sigma), α=0.090.12+0.15\alpha=-0.09^{+0.15}_{-0.12} (1σ1\sigma) 0.19+0.26^{+0.26}_{-0.19} (2σ)(2\sigma). Furthermore in this model, we can see that the evolution of equation of state (EOS) for dark energy is similar to quiessence, and its current best-fit value is w0de=0.96w_{0de}=-0.96 with the 1σ1\sigma confidence level 0.91w0de1.00-0.91\geq w_{0de}\geq-1.00.Comment: 9 pages, 5 figure

    Running coupling: Does the coupling between dark energy and dark matter change sign during the cosmological evolution?

    Full text link
    In this paper we put forward a running coupling scenario for describing the interaction between dark energy and dark matter. The dark sector interaction in our scenario is free of the assumption that the interaction term QQ is proportional to the Hubble expansion rate and the energy densities of dark sectors. We only use a time-variable coupling b(a)b(a) (with aa the scale factor of the universe) to characterize the interaction QQ. We propose a parametrization form for the running coupling b(a)=b0a+be(1a)b(a)=b_0a+b_e(1-a) in which the early-time coupling is given by a constant beb_e, while today the coupling is given by another constant, b0b_0. For investigating the feature of the running coupling, we employ three dark energy models, namely, the cosmological constant model (w=1w=-1), the constant ww model (w=w0w=w_0), and the time-dependent ww model (w(a)=w0+w1(1a)w(a)=w_0+w_1(1-a)). We constrain the models with the current observational data, including the type Ia supernova, the baryon acoustic oscillation, the cosmic microwave background, the Hubble expansion rate, and the X-ray gas mass fraction data. The fitting results indicate that a time-varying vacuum scenario is favored, in which the coupling b(z)b(z) crosses the noninteracting line (b=0b=0) during the cosmological evolution and the sign changes from negative to positive. The crossing of the noninteracting line happens at around z=0.20.3z=0.2-0.3, and the crossing behavior is favored at about 1σ\sigma confidence level. Our work implies that we should pay more attention to the time-varying vacuum model and seriously consider the phenomenological construction of a sign-changeable or oscillatory interaction between dark sectors.Comment: 8 pages, 5 figures; refs added; to appear in EPJ

    Forecasting Cosmic Doomsday from CMB/LSS Cross-Correlations

    Get PDF
    A broad class of dark energy models, which have been proposed in attempts at solving the cosmological constant problems, predict a late time variation of the equation of state with redshift. The variation occurs as a scalar field picks up speed on its way to negative values of the potential. The negative potential energy eventually turns the expansion into contraction and the local universe undergoes a big crunch. In this paper we show that cross-correlations of the CMB anisotropy and matter distribution, in combination with other cosmological data, can be used to forecast the imminence of such cosmic doomsday.Comment: 12 pages, 12 figure
    corecore