Within the framework of modified teleparallel gravity, we reconstruct a f(T)
model corresponding to the QCD ghost dark energy scenario. For a spatially flat
FRW universe containing only the pressureless matter, we obtain the time
evolution of the torsion scalar T (or the Hubble parameter). Then, we calculate
the effective torsion equation of state parameter of the QCD ghost f(T)-gravity
model as well as the deceleration parameter of the universe. Furthermore, we
fit the model parameters by using the latest observational data including
SNeIa, CMB and BAO data. We also check the viability of our model using a
cosmographic analysis approach. Moreover, we investigate the validity of the
generalized second law (GSL) of gravitational thermodynamics for our model.
Finally, we point out the growth rate of matter density perturbation. We
conclude that in QCD ghost f(T)-gravity model, the universe begins a matter
dominated phase and approaches a de Sitter regime at late times, as expected.
Also this model is consistent with current data, passes the cosmographic test,
satisfies the GSL and fits the data of the growth factor well as the LCDM
model.Comment: 19 pages, 9 figures, 2 tables. arXiv admin note: substantial text
overlap with arXiv:1111.726