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A broad class of dark energy models, which have been proposed in attempts at solving the cosmological
constant problems, predict a late time variation of the equation of state with redshift. The variation occurs as
a scalar field picks up speed on its way to negative values of the potential. The negative potential energy
eventually turns the expansion into contraction and the local universe undergoes a big crunch. In this paper we
show that cross-correlations of the cosmic microwave background anisotropy and matter distribution, in com-
bination with other cosmological data, can be used to forecast the imminence of such cosmic doomsday.
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I. INTRODUCTION region wherepp dominates at about the epoch of galaxy
formation (which is close to the present tilmeMuch larger

Observational cosmology has yielded several surprises, ofalues of pp would yield no galaxies at all, while much
which the most perplexing is the discovery of a smooth darksmaller values are unlikely due to the smallness of the cor-
energy (DE) component which has come to dominate theresponding range gfp, assuming that all values of, are
Universe at recent epochs, causing cosmic accelergtigh @ priori equally likely[11,15.
The nature of this component is still a matter of speculation, A simple implementation of this idea is obtained by as-
and a very important challenge for the coming years will besuming that the dark energy is due to a scalar figldith a
to determine its origin and physical properties. Recently, sewery flat potentialV(¢) [15,16. The values of¢ are ran-
eral groupg3—7] have reported positive results for the cross-domized by quantum fluctuations during inflation, resulting
correlation between the cosmic microwave backgroundn a variation of¢ with a characteristic scale much greater
(CMB) power spectrum and that of different large scalethan the present Hubble radius. Galaxy formation is possible
structure(LSS) surveys, providing further evidence for the only in regions whereV(¢) is in a narrow range neav
existence of DE. In this paper, we shall try and illustrate how=0. One expects that the potential in this range is well ap-
such cross-correlation may help in unveiling some of theproximated by a linear functiofl5,17,18,
properties of DE, focusing on the observational signatures of
a model with a time dependent DE equation of state. V(¢)=—s¢, 1)

The simplest interpretation of the dark energy is in terms
of a cosmological constant, with an equation of stpge ~ Wheres=—V’(0) and we have set=0 atV=0. The slope
=—pp. The cosmological constant, however, raises twasshould be sufficiently small, so that the variationgofs not
puzzles of its own. First, there is a glaring discrepancy befast on the present Hubble scale. Quantitatively, this can be
tween the observed dark energy dengity and the huge expressed as the slow roll condition,
values of the cosmological constant suggested by particle
physics models. Second, the obseryggdis comparable to SS3H(Z)Mp, i)
the matter densityp,,. This is the notorious time coincidence
problem: why do we happen to live at the epoch when thevhereM ,=1//87G is the reduced Planck mas3,is New-
dark energy starts dominating? ton’s gravitational constant, anid, is the present Hubble

It has long been suggested that both puzzles may find expansion rate.
natural explanation through anthropic selection effects, in In models with a single DE field, and in the absence of ad
scenarios whergp is a random variable, taking different hoc adjustments, it has been arguediif] that the slow roll
values in different parts of the Universe. The proposed seleaczondition (2) is likely to be satisfied by excess, by many
tion mechanism is very simplg—14]. The growth of den- orders of magnitude, rather than marginally. In this case,
sity fluctuations leading to galaxy formation effectively stopsremains nearly constant on the Hubble scale, and the effec-
when pp comes to dominate over the matter density. In re-tive equation of state for the dark energy Ws=pp/pp
gions wherepy, is greater, it will dominate earlier, and thus ~—1, with a very high accuracy. However, a different situ-
there will be fewer galaxie&@nd therefore fewer observgrs ation may be expected in multifield models, where the slope
A typical observer should then expect to find herself in aof the potentiak is itself a random variablgl9,21 [the role
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of the field ¢ in multifield models is played by the variable  The paper is organized as follows. In Sec. Il we describe
in the direction ofVV(¢,) in the field spack The observed the evolution of the Universe according to the doomsday
value of the slope may then be influenced by anthropic semodel. We also show that the corresponding CMB and
lection. A very large slope would cause a big crunch muchPresent matter power spectra are virtually identical to those
before any observers can develop. Hence, in cases where tiéich are obtained in a model with a constanequal to the

prior distribution favors largs, the most probable values of averagegw) for the doomsday model. In Sec. Ill we study
the slope would be the ones for which the slow roll conditionth® matter/CMB temperature cross-correlation, and show that

(2) is only marginally satisfied21] (see alsq18]). it can be used to break this degeneracy. Our conclusions are

We thus have some motivation to consider a model wher§Ummarized in Sec. IV.
the dark energy is due to a scalar field with a linear potential
(1) and a slopes marginally satisfying the slow roll condition Il. EVOLUTION AND POWER SPECTRA
(2). A marginal value of the slope implies that the big crunch IN THE DOOMSDAY SCENARIO
will be imminent about 10 billion years from now. The
model can therefpre be ce}IIe_d a *doomsday model. A sa- ble Universe, and so we assume a background model which
lient feature of this scenario is that the equation of state o

dark energy changes significantly at low redshift, when theS hqmo_geneous anq isotropic. In_ addition to _the scalar field
correlation between the large scale structure ev,olution anﬁ’ W'th linear potential(1), the Un|ver§e cc_)nta|r_13 the usual
the CMB temperature anisotropies develops. Hence, we m aQ|at|on and matter. The dynam|c§ Is given by the
; L ’ riedman-Robertson-WalkéFRW) equation and the scalar

expect that the analysis of such cross-correlation may reve«ﬁleI d equation
a time varying equation of stafg,=w(z) pp, wherezis the q
redshift. This will be the subject of the present paper.

Prospective constraints on cosmic doomsday based on fu- H2=
ture determinations of the dimming of distant supernovae
were discussed in Ref22]. The analysis shows that SNla
observations, in combination with CMB and weak lensing d+3Hp—s=0. (4)
data, have an impressive potential for constraining the equa-
tion of state parameter. However, the constraints reported ihlere Qo is the fractional energy density in matter today,
[22] still show a considerable degeneracy amongst model@ndH, is the present Hubble rate.
with the same “average{w) [see Eq.8) below]. Interest- In addition to the equations of motion, we need to specify
ingly, as we shall see, the ISW-matter cross-correlatiorinitial or boundary conditions. At early times0), we
breaks this degeneracy, offering the possibility of telling aexpect that the scalar field is at rest and¢ge0. This is
true doomsday model from a model with a constantbecause, in the back of our minds, we imagine an inflation-
w=(W). ary phase which redshifts the gradients and velocities of the

The methods presented here can obviously be used instalar field. Hence the scalar field is effectively homoge-
more general context, provided that there is significant evoneous and static at=0. The initial value of the scale factor
lution of w at low redshifts. A rather common assumption inis zero as in usual Friedmann-Robertson-Walker evolution.
phenomenological studies of dark energy is to consider th&he initial value of the scalar field is a free parameter. As
simplest case of a constant This is partially motivated by mentioned in the Introduction, this takes different values in
degeneracies such as the one we just discussed above, whigistant regions of the Universe, separated by distances much
also occur in the angular spectrum of CMB anisotrop®3  larger than the present Hubble radius. Finally, we require that
as well as in the linear matter power spectrum. The analysithe present value of the total energy density be unity. This is
of CMB-LSS cross correlations with a constantincluding  a boundary condition. These conditions can be summarized
w=—1) was considered in Ref$24—-27. Here we shall as follows:
drop this assumption, since the variationveofwith redshift _
may provide a very exciting clue to the nature of dark en- a(0)=0, #(0)=4¢q, ¢(0)=0, H2(t0)=H§, 5)
ergy, as discussed above.

In our calculation we shall adopt a top-down approachwheret, is the present time, defined by the requirement that
starting from the primordial spectrum of fluctuations. Thisa(tg)=1.
differs from previous studies where the starting point is the The cosmological evolution following from Eq§3), (4)
present matter power spectrumhich is evolved backward and(5) has been studied by several authid3,20-22. The
in order to find its correlation with CMB Our approach main features of the evolution are as follows:
unifies the treatment of CMB and matter power spectra, and (i) The Universe starts out dominated by matter and hence
is more convenient for taking full account of fluctuations in a~t%3. At the same time the scalar field is essentially at rest.
the dark energy. Moreover, since all perturbations are (ii) After some time, the matter density falls below that of
evolved numerically with themBrAST code[28], we do not  the scalar field potential energy, and the evolution becomes
resort to the frequently used approximate analytical expresscalar field dominated. Since most of the energy in the scalar
sions for the growth function, or the also commonly usedfield is potential energy, we hawae<exp(Ht).
small angle approximatiof29]. The details of our calcula- (iii) As the field slips down the potential, the potential
tion are reported in the Appendix. energy changes sign ongechanges sign. With further slip-

We are interested in the late time evolution of our observ-
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FIG. 1. Scale factor versus time for four different slopes:1
(solid), s=2 (short dash s=3 (dot) ands=4 (long dash. _ . _
with current CMB data. Hence it is necessary to suitably

ping, a time comes when the total energy density is zeroadjust cosmological parameters for different values.6Fhe
This epoch marks the turning point, where cosmic expansiogosmological parameters in models with different values of

changes to contraction. From this time _<bhjs given by the S, presented in Figs. 1 and 2, dependSohe simplest way
negativesquare root of the right-hand side of H@). to preserve the shape of the CMB fluctuations spectra on

of Elr:/e) ':‘(fatlgf fLiJeT(IjV?;LSrﬁesstath d%?:it'zzggng’uihti(la(r'geigcnin:trgg_smalI and intermediate scaléshere the cosmic variance is
ping the contracting phase, and the Universe rapidly arriveSmaID is to explore the so-called geometric degenefaty.

at the big crunch The shape of the spectra depends mainly on two scales:

These features are apparent in Fig. 1, where the time evés_the sound ho_nzon at t_he time of recomblnatlon, and
lution of the Universe is represented for different values ofda—the angular diameter distance to the last scattering sur-

the dimensionless slope face. Models with the same values @f,h? andQ h? have
the samer,. Here Q) and Q, are the total matter and
‘s=s/(\3M pHg). (6) baryon density fractions today, art=H,/(100 km sec?

Mpc1). Since the dark energy did not play a significant role
Qne feature of th.is evolution that' is relevant for observa- the time of recombination, changing the valu&pbr w,
t!onal cosmolo_gy is that the equation of state for the scalagyeg not affect,. The main effect that changes in the prop-
field changes in an unconventional manner. Very early ongtieg of the dark energy have on the CMB spectra on small

¢—0 and hencepp~—pp Wherepp andpp denote pres-  angular scales is due to the changedj, which manifests
sure and energy density k. The dark energy equation of jiself as a shift in the positions of the peaks in the angular

state parameter is defined by spectra. This shift can be compensated for, without altering
o the structure of the peaks, by adjusting the valué.oAs a
_Po_¢72—sé (7)  reference model we use the Wilkinson Microwave Anisot-
PD  P2+sd ropy Probe’st\ WMAP's) best fit power law cold dark matter

_ with a cosmological constantA(CDM) model[31] with h
Since =0 at early timesw=—1. At later times, the field =0.72, spectral indexx=0.99, reionization optical depth
starts to roll down the potential and hence the kinetic energy, =0.166, Q,h?=0.024, Q\,h?=0.14 and amplitudeA

starts to play a role irpp and pp. This means thawv in-  =0.86 (as defined if32]). Given a value oF, we vary the
creaseswith time. In Fig. 2 we showw as a function of value ofh, while keepingr,, A, n, Qyh? and Q,h? fixed,
redshift z (figures analogous to Figs. 1 and 2 can also beand find one that best reproduces the CMB spectra of the
found in[18,22). reference model.

If we only varied's, keeping all other cosmological pa-  As was noted in23], except for the very large scales,
rameters fixed, we would change the angular diameter disSMB spectra are only sensitive to the averaged value of the
tance to the last scattering surface and spoil the agreemeaguation of state of dark energyy), defined as
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TABLE I. Models considered in the papev.is the dimension-

less slope of the potential, defined in Ef). For each value o,
the dimensionless Hubble paramettdés adjusted so that the model

reproduces the CMB peak structure observed by WMAP. The table

also shows the average valuewffor different models.

Model h (W02,
5=0 0.72 -1

%=1 0.69 —0.94
3=2 0.66 -0.81
3=3 0.62 -0.66

Jl da Qp(a)w(a)
, (8

<W>[o,zls] =

fl da Qp(a)
s

where the subindebs on z anda refers to the surface of last
scattering. In Table | we show the best fit valuedi@ind the

corresponding values dfw)jo, ; for several values 0B.
Note that the uncertainty in WMAP’s estimate bfwas

PHYSICAL REVIEW D69, 063511 (2004

45

k)

=

35

0.1 1
1

o
o
=

FIG. 3. Upper panel: the luminosity®®, vs redshift plots for

the ACDM (solid line), s=2 (dot—short dash s=3 (dot), w=

—0.81 (long dash, w=—0.66 (short dashand theQ),=1 (dot -
long dash models. Lower panel: differences between th& for
the models in the upper panel and &' for the Q,,=1 model.

about+0.05[31]. The same uncertainty would apply to the Models with the same average valuewofare practically indistin-

best fit values oh corresponding to models with 0.

In the doomsday model, the equation of state parameter
can vary significantly at recent redshifts. This variation is not
necessarily constrained by existing analysis of supernov

data[33,34], which by and large assumed a constantin
Fig. 3 we plot the effective luminosityn®™ as a function of

redshift, as defined ifi2], for the's=2 andw= —0.81, and

guishable.

The equation of state paramet®(z) obviously has an
énpact on different observables, such as CMB and matter
power spectra. In particular, it should affect the integrated
Sachs-Wolfe(ISW) contributions to CMB anisotropies. At
first sight, one may think that a less negative equation of

state for dark energy would result in a suppression of ISW,

's=3 andw= —0.66 models. As one can see from the figure,relative to the case of a cosmological constant. In a universe

the doomsday model with a givenand the corresponding dominated by matter, with pressupg; =0, there is no time
constantw model have almost identical predictions in the dependence of the gravitational potential, and the frequency

magnitude versus redshift curves. Since constambhodels
with w>—0.8 are disfavored at theosllevel [33], the value
's=3 which gives an average of —0.66 is also disfavored
at the 1o level. However, we shall still include it in our
subsequent analysis, since it is not excluded at thdeXel
[33].

In Fig. 4 we plot the temperatufdT) and temperature-
polarization cross-correlatiofiTE) spectra for models in
Table I. As shown in Table I, as we increasea smaller
value ofH, is needed in order to fit the CMB spectrahe
value h=0.62+0.05 which we used for the=3 model is
somewhat lower than the currently favored observatiomal 1
region, given byh=0.72+.08[35], but still marginally con-
sistent with it.

Yn principle, one could vary other cosmological parameters as
well. However, unless one changed the model considerably, e.g.

of a photon is only redshifted by the cosmological expan-
sion. In this case, there is no late ISW effect. In the dooms-
day scenario, the dark energy equation of state is closer to
that of ordinary matter, and one might expect that the ISW
effect would be smaller than in the=—1 case. However,
the dark energy perturbations are coupled to the dark matter
perturbations, and will also contribute to the ISW effect. The
net result is that there is no suppression of the ISW effect

even for values 0B corresponding to average as high as
—0.66. This is illustrated in Figs. 5 and 6. There, we plot the

angular spectrun(i:TT SW{ and the autocorrelation function
CTTISW(9) of temperature anisotropy due to the late ISW
effect, defined as

)=(ATisw(N)ATisw(Ny))

e

CTT,lSW( 0

2¢+1
c'" ISWePg(cosé?).

(€)

relaxed the assumptions of adiabaticity or scale-invariance of pri-

mordial fluctuations, it is unlikely that one could avoid makidg
small in models with(w)>—1 [31].

Here AT,su(n) is the ISW contribution to the temperature
anisotropy in the directiom on the sky,f is the angle be-
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FIG. 4. TT and TE angular spectra fee=0 (ACDM) (solid FIG. 6. The ISW sourced temperature anisotropy correlation
~ ~ ~ : TT,ISW, H :
line), 5=1 (dot—short dashs=2 (short dashands=3 (dot) mod-  functionC (6) for the models in Fig. S.
els together with the WMAP data points. The valuehat chosen ) ) _
as indicated in Table I. Note that due to the geometric degeneracy, It is quite clear from Fig. 4 that CMB spectra alone are
all curves look very much alike, the effect of a higheeing ~ NOt capable of differentiating between models with different
undone by choosing a loweér values ofs (includings=0) because of the geometric degen-

oA - eracy. The effect of a larger can be undone with a smaller
tween dlrectlonm% andn,, and 'Fhe angular tzra_cke_ts de_note h. (Of course, if we had a stronger observational constraint
ensemble averagirighe expression foATsy(n) iS givenin  on h then this would result in stronger constraints @i

the Appendiy. Note that the late ISW contribution of most ~yB spectra alone also cannot differentiate between a

models is in fact a bit larger than in theCDM case. model with a certain value of and a model with the corre-

600 ———————rrr . —rrr — sponding constantv=(w)o, ; (see Table)l This is illus-
i trated in Fig. 7, where we plot the predictions of th€DM,
Mo 1 6000 ———————7 — .
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¢, for the five models in Fig. 4 as 10 100 1000

to the late ISW effectC .

well as for the model with the constawt= —0.66 (dot—long dash
line). As explained in the text, there is no suppression of the ISW FIG. 7. C, vs| for ACDM (solid), s=3 (dot) andw=—0.66
effect due to a higher value o¥. (dash models.
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the models in Fig. 7, as well as for tise=2 (dot—short dashand
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w=const= —0.66 ands=3 models. Ideally, some of the de-
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whereA(n;) and(n,) are the CMB temperature anisotropy

and the matter density contrast along directiopsand n,
separated by the angle on the sky’ In the Appendix we
show that the angular cross-correlation spect@!i, can
be written as

MT

9
C i

dk
e=4w2—5f ARTSR (M (K),

K 11)

wereA72Z is the primordial curvature power spectrum, as de-
fined, e.g. in[36], andT'*Y, (k) andM (k) are given by

ISW

70 i .
= dne” ™ (K[ 9= no])(Covd— ),

Mr
(12)

T

Mo=Cow | i (KL 7= 6] 2Wo[2(7)T3(K, 7).
Mr
(13

where the dot denotes differentiation with respect to confor-
mal time 7, 7 is the time todayy, is a time very early in
the radiation erar(#) is the opaquenes¥yy(z) is the nor-
malized galaxy selection functiong(k,7), #(k,5) and
‘5(k,7) are evolution functions which we define in the Ap-
pendix and which can be calculated numerically usimg-
FAST [28], csy andcgy are numerical coefficients also de-
fined in the Appendix, andj,(-) are spherical Bessel

generacy can be removed by considering the matter powédgnctions.

spectrum. Assuming that we had a good control over the The choice of the selection functio,(z) depends on
bias, the matter power spectrum could in principle be in-which large scale structure data set one wants to consider.
ferred from observations. In Fig. 8 we plot the linear matterDepending on the particular experiment, one also has to ac-

power spectra az=0 for the w=const= —0.66 ands=3
models, as well as for the=2 and its correspondingv
=const= —0.81 model. Note thaP(k) differs substantially
on large scales fonCDM and the models with a lower
average value ofv. However, there is still an impressive
degeneracy between models with the sawe: the curve
corresponding to a constant= —0.66 and the curve corre-

sponding to the model witls=3 (with (w)=—0.66) are
almost identical, and similarly for th&=2 and thew

selves with breaking this residual degeneracy.

Il ISW AND TEMPERATURE-MATTER DENSITY
CORRELATIONS

In this section we show how the CMB-LSS cross-
correlation can be used to probe the time-dependence of t

dark energy equation of state. The cross-correlation is de;

fined as

S S 20+1
CYT(0)=(A () 8(R)) = 3, =5 C"(Pu(6),
(10

count for the possible bias between the distribution of the
observed objects and that of the underlying dark matter. Our
results forCMT(9) for the ACDM model are consistent with
those of[4—6], when appropriate biases and selection func-
tions are used.

Equation(11) differs from the analogous expressions in
[4—6,24—-27 as it uses the primordial curvature power spec-
trum rather than today’s matter power spectrum. This, as
explained in the Appendix, allows us to take a more com-
plete account of the dark energy perturbations.

tweenw= const and varyingv models. The cross-correlation

is sensitive to the value off averaged over the range of the
window functionWy(z). If wis a rapidly changing function

of redshift, as in the case of the doomsday model, then de-
pending on where the maximum of the selection function is,
CMT(6) will “see” different values of(w). We have calcu-
%ted the cross-correlation for several window functions, all
aken to be Gaussians of approximately the same width as
the SDSS window functionfs], all with the same standard
deviationo,,=0.07 and centered at various valueszgfin

the interval[0.1,0.9. In Fig. 9 we show the plot oEMT(6)

2The monopole and the dipole contributions depend on the choice
of the reference frame and are not included.
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FIG. 9. The cross-correlation breaks the remaining degenera- FIG. 11. CM7(0.1°) vsz, for the models in Figs. 9 and 10:
cies. In each panel, we plot a doomsday model together with its\ CDM (solid), s=2 (dot—short dash w=—0.81 (long dash, s
corresponding constamt model[these two have degenerate CMB =3 (dot) andw= —0.66 (short dash
spectra andP(k)]. For comparison, each plot also contains the
fiducial ACDM model. Top two panel€€MT(¢) for thes=2 (dot—  Zw- (As is seen from Fig. 9, for angular separations less than
short dashand thew= —0.81(long dash models, as well as for the about a degree, the plot is insensitive to the choice.of
ACDM model(solid), for two values ofz,,. Bottom two plots: the From Fig. 11 one can see that observations focusing on red-
same as in the top two plots but for tise=3 (dot) and thew  shifts in the rangez,,=[0.2,0.4 have the best potential of
= —0.66 (short dashmodels. detecting the time-dependencevof

An interesting question is which scales give the dominant

for thes=2 ands=3 models, together with their respective contr@but@on to the cross-correlation. In Eig. 12 we plot the
w=const models, at two different valueszf. Correspond- contribution per log) to the cross-correlation @=0.1° for

ing angular spectr&"7, are shown in Fig. 10. In addition, the ACDM, 75:_3 and w=—0.66 models using,,=0.2.
in Fig. 11 we plot the values aEM7(0.1°) as a function of Namely, we define a quantity(k) by
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FIG. 10. Cross-correlation angular spectra for the same models FIG. 12. (k) vs k for the ACDM (solid), s=3 (dot) and the
as in Fig. 9. w= —0.66 (short dashmodels forz,=0.2.
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- sible that they may fall within the range of detectability in a
c (0-1°)=J d(Ink)I (k). (14 not too distant future.

IV. SUMMARY AND CONCLUSIONS
The expression df(k) can be deduced from EGA19) of the

Appendix_ As one can see from F|g 1|Z,k) has a broad Current efforts to understand the dark energy component
peak aroundk~.01h Mpc ™!, corresponding to length scales Of our universe often employ dynamical scalar fields. The
in the range 26 30ch~ ! Mpc. This roughly coincides with dynamics of such scalar fields lead to variation of the dark
the peak in the matter power spectrum, depicted in Fig. 82nergy equation of state parameter,We have considered
For larger angular scales, it is still the same linear scales tha@strophysical signatures of a varying equation of stafe),
dominate the integrand. However, for angts 10° there is i the context of doomsday models. There are two main is-
destructive interference between the modes and the correlgu€s that we have considered. First, can we tell if the average
tion gradually disappears. value ofw is different from—1. Secondly, what astrophysi-

Let us now briefly consider the prospects for observation¢al signatures are sensitive to the time variationaf
and whether these will allow us to distinguish amongst dif- To address both issues, we have considered autocorrela-
ferent models. In practice, one correlates the CMB anisotrotions of the CMB temperature anisotropies, the matter power
pies with some data s€¢.g. a galaxy surveywhich is sup-  SPectrum, and cross-correlation of the anisotropy with matter
posed to trace the underlying dark matter distribution. Offluctuations. The WMAP data are well reproduced by models
these two, the cleanest input is the CMB. Although veryWith a different average value of by suitably adjusting the
precise, current CMB data cannot separate the ISW contrilubble parameter, and therefore the CMB data cannot by
bution from the net anisotropy, which reduces the signal-tothemselves discriminate amongst different models. For a
noise ratio of the cross-correlation. There is hope, howevegiven CMB, the present linear matter power spectrum is sen-
that such separation may be possible in the future, with medsitive to the average value @¥(z), but not to its time de-
surements of CMB polarization towards galaxy clusfe@.  pendencesee Fig. 8 Finally, the temperature-matt€rM)

A prime source of uncertainty in the matter distribution is Cross-correlation is sensitive to both the average value of
the bias factor. One way to proceéahich has been implic- and to the time variatiosee Figs. 9, 10 and 11
ity used e.g. in[5]) is the following. From the observed The TM cross-correlation requires accurate determination
CMB autocorrelation, and following the steps we have de-of both CMB anisotropies and the matter fluctuations. Ongo-
scribed in the previous section, the matter power spectrurildd CMB observations have been very successful at produc-
can be normalized. Comparing this to the autocorrelatiodnd data with very small error bars and it is likely that the
function of any given matter survey, the bias factor can besituation will improve even further in the coming years. Ac-
inferred. Hence, from the cross-correlation of the survey witHcurate surveys of the matter fluctuations are likely to be more
the CMB data one can infer the cross-correlation function ofhallenging since there are unknowns such as the bias factor.
the matter distribution with the CMB. Note in particular that However, since the CMB anisotropies and large-scale struc-
the predictions for the matter spectra for the- —0.66 and  ture originate from the same density fluctuations, it is quite

=3 models are practically indistinguishablsee Fig. 8 possible that a combination of the data can significantly re-
Hence, adjusting for the bias will preserve the relative gif-duce the uncertainties. We have shown that the optimal strat-

ference between predictions for the cross-correlation fof9Y for_detectlng a_doomsday variation w(2) is to use a
these two model3. survey in the redshift ranged.2,0.4.
Error bars in current determinations of the cross- Observations of supernovae over the next ten years are

correlation function[3—6] are still too large to distinguish /SO likely to provide information om(2), as discussed in
between models. However, the results& have been ob- Ref.[22]. The adva_ntage_ of pl_anned supernovae observations
tained by using just a small fraction of the sky, and the sity-are that they provide direct information on the Hubble ex-

ation may improve considerably with fuller sky coverage.Pansion ra_tlf Whi(f:h is C'OSE'IY relqtﬁdMZI)l. Furthermore,
Also, the uncertainties in bias may be substantially reduced!® data will be of good quality, with small error bars. How-
with further observations such as weak lensing surveys. ThEVeT: the observations may not be too sensitive to rapid varia-

differences in the cross-correlation between the models corfion of w(z) at recent redshifts, the hallmark of the dooms-

sidered in this section can be as large as 20%, and they hadi@y scenario. The TM cross-correlations, on the other hand,

a substantial dependence on redshift. Hence, it seems pla@f€ Sensitive to this time variation and may perhaps be used
together with the supernovae observations to further con-

strainw(z).
3t should be noted that at small angléahere the cross-
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APPENDIX C'D(rﬁ,n):J 2 )3<'1>(k,77)eik'”r, (A7)
an
Here we explain details of our calculation of the cross- o A
correlation. Let us define and similarly for¥(rn, 7) and ,4(rn,»). We can write
. T(n-T 70 70 . B
A(n)= ( % (A1) CMT(9)=J dnlf dnoz(2)e” " TIW[2(7,)]
M M
3 317
and Xf d’k f d’k qik-nr1 ik’ Nr
A (2m)®) (2m)®
SRy= p(n)—p A2 _ _
== (A2) X ([ (K, 70) =W (K, 7)1, 7). (AB)

h 2 is th d al h Since the time-evolution of each Fourier mode only depends
where T(n) is the CMB temperature measured along the,, the magnitudé=|k|, we can separate the directional and

directionn, p(n) is the mass density along® andT andp  time dependence as

are the averaged CMB temperature and the matter density.

The temperature anisotropy due to the ISW effect is an inte- ®(k, )=k, 7,) p(k, )
gral over the conformal time:

W(k,n) =YKk, 7)) (K, 7)

A= | “dy e (@ -V) (70— ], (A3) 3
- 5(k, )= (K, 7,)3(K, 7). (A9)

where 7, is some initial time deep in the radiation eng, is
the time today® andW¥ are the Newtonian gauge gravita-
tional potentials, 7(7) is the opaqueness, which should, in

Hence, we can writd> and¥ as

principle, be included to account for the possibility of late Pk, ) =P (K, 70) (K, 7)
reionization, and the dot denotes differentiation with respect . .
to 7. W (k,7)=W(k,7)p(k, 7). (A10)

The quantityé(ﬁ) contains contributions from astrophysi- ) . .
cal objects(e.g. galaxiesat different redshifts and can also Consequently,  the  quantity ([®(K,71) =V (K, 71)]

be expressed as an integral over the conformal time: 8(k’,7,)) can be separated into the initial power spectra,
which contain all the information relevant to the ensemble

- n dz . averaging, and the time-evolving part which is the same for
5(n)=J dn g nt[Z( 7]16((mo—m)n, 1), (A4)  all members of the ensemble:
Mr

whereW,(2) is a normalized galaxy selection function. [Pk, 71) =W (K, 71)]8(K', 72))
We are interested in calculating the cross-correlation func- , - ~,
9 =(®(K, 7,) (K", 7)) bk, ) (K, 72)

We taker, to be a sufficiently early time in the radiation era
where the angular brackets denote ensemble averaging andyhen all modes under consideration were superhorizon.
is the angle between directiong andn,. Let us introduce  Then, for adiabatic initial conditions, the growing mode so-

lutions for 8, ® andWV are related to each other \ia9]

“In reality one divides the sky into pixels, with a direction c =£:_ § c :2
assigned to each pixel, and counts the number of galakiés), Ny 20 YTy
inside each pixel. Then one can find the galaxy number overdensity
inside each pixel[N(n)—NJ/N, which would be related tp(n)  WhereR,=p,/(p,+p,) andp, is the energy density in rela-

2
1+ gR,,) , (A12)

up to a bias factor. tivistic neutrinos. FolN,, flavors of relativistic neutrinogwe
*Throughout this Appendix we work in the Newtonian gauge us-take N,=3), after electron-positron pair annihilation,
ing conventions of, e.g., Ref38]. p,lp,=(7N,/8)(4/11f". This allows us to write
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([®(K,71) =W (K, 71)]8(K", 772)) CMT(g)= 235 nodnljnodnzi( 772)6—7(771)\/\/9[2( 7,)]
:Cﬁ\lf(q’(ka??r)q’(krﬂlr» K K
. . ~ dk in(kR
X[Caw (k)= k7 3K 7). (AL3) « [ Taz00 T R nm),  (A19

From homogeneity of space it follows that L
genetly ot sp whereR=r2+r2—2r,r,cosé. In addition, if one were to

W (k V(K = (21)38@) (k+ k'Y Pu (k use the expressiofA19), one would have to subtract the
(W (k7 )W (K" 7)) = (27m) 6 P ),(A14) monopole and dipole contributions @"7(¢). This can be
achieved by taking

wherePy, (k) is the primordial gravitational power spectrum sinkR)  sin(kR)  sinkr, sinkr,
related to the more frequently used curvature power spec- _ _

trum Pp=27?A%/k° via [32,39 kR kR kry  krs
3 sinkr sinkr
9 9 272 1 2
- —coskr —coskr, |.
PW(k):Z_SPR(k):Z_S k3 A723' (AL5) k2r1r2( kry l)( kra 2)

(A20)
To the best of our knowledge, in all previous literature

that contained calculations of the cross-correlation, it was the In prac_:tlce, one wants to avoid evaluating double time
Hﬂtegrals in Eq.(A19). A common way to reduce them to a

rather than the primordial spectrum. One can do that if fluc>iNdle time integration is to use the so-called small angle

tuations in the dark ener are much smaller than those (6<1) and small st_apargtiodr(l—r2|<r1) _approximations
in cold dark matterﬁpcdm?%poDr 70, one has [29]. These approximations were used in e.g. RE#s6].

One can change the integration variablester;—r, and

H2 r=(r,+r,)/2 [or, equivalently, to n=(n,+ 5,)/2] and
O—Y~— F(5Pcdm+ 5pp) (A16) write, in this approximation,
T 9 (m . o)

and usually one proceeds by assuming that << dpcqm in c (0)~2_5 , doyze Wyl z(7)]
the equation above. While this is not necessarily an invalid '
condition, working with the primordial spectrum allows us to dk , 2r sin(kR)
use exact relation§A12), valid deep in the radiation era, XJTAR(k)F(k’”’”)LZrdX KR
when all relevant modes are outside the horizon and dark
energy fluctuations are negligible, and avoid the need for (A21)

additional assumptions. It turns out, however, that, while on _
scalesk=0.001h Mpc~* and larger the fluctuations in the WNereR~ Nx+r2¢2. The integral ove could be evalu-

dark energy can be as large as 10%, on scales ated analytically if one were allowed to replace the

~.01h Mpc ™1, where the cross-correlation is important, the[—ﬁZ_r_,Zr]l Iirlnits by [_/lio'oo]' Onle can asslumef thag as
contribution of dark energy perturbations is rather small, lesSufficiently large (>1/k¢) on relevant scales for that re-

than 1%. placement to be appropriate and use
Using Egs(A13) and(A14) we can now rewrite EqA8) - sinkR)
as fﬁxdx R FJO(krG) (A22)
9 (o LA : : .
CMT(9) = Z_SI dﬂlf d722(72)e” W[ 2( ;)] to obtain the following form:
My My

9 70 .
CMT(0)~ ¢ f  dnze” Wy(z()

Xf o AZ(K)elk (2 DE (K, 7y, 77,)
4mk3 " S

mdk
(A7) XJ'?AR(k)Jo(ke[ﬂo_ n)F(K,7,7).
where we have defined (A23)
. . 5 While the approximate expressid@A23) can be useful for
F(K, 71, 72)=CgsylCowd(K, 71) — (K, 1) ]5(K, 775). analytical estimates, it gives an error of order 2—4 % on the

(A18) scales of interest and we shall not resort to it.
Instead of evaluating the expressi@i9) directly, from a
Decomposing the exponents in EEAL17) into spherical computational point of view, it is advantageous to decom-
functions and some manipulations lead to pose it into Legendre series, compute the individual coeffi-
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cients of the decomposition, and then sum the series.

Namely, Eq.(A19) can be written as

o 20+1
CMT(0)=IZ:2WCMT€P5(COSH), (A24)

where we do not include the monopole and dipole terms in

the sum, and wher€M7, can be written as

9
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= f ey (K 7= noD (o= )
M
(A26)

Mo=Cow | i (KL 7= 6] 2Wo[2(7)T3(K, 7).
Tr
(A27)

dk
MT _ 2 TISW
C «‘4”§3] ?ART (KM (k), (A25) where j,(-) are spherical Bessel functions. One can use

with functionsT'*W,(k) andM (k) defined as

CMBFAST [28], with minor madifications, to compute func-
tions T'SW, andM, and to normalizeA2,(k).
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