6,034 research outputs found

    Inflationary cosmology of the extreme cosmic string

    Full text link
    Starting with a study of the cosmological solution to the Einstein equations for the internal spacetime of an extreme supermassive cosmic string kink, and by evaluating the probability measure for the formation of such a kink in semiclassical approximation using a minisuperspace with the appropriate symmetry, we have found a set of arguments in favor of the claim that the kinked extreme string can actually be regarded as a unbounded chain of pairs of Planck- sized universes. Once one such universe pairs is created along a primordial phase transition at the Planck scale, it undergoes an endless process of continuous self-regeneration driven by chaotic inflation in each of the universes forming the pair.Comment: 15 pages, RevTex, to appear in Int. J. Mod. Phys.

    Inflation and Large Internal Dimensions

    Full text link
    We consider some aspects of inflation in models with large internal dimensions. If inflation occurs on a 3D wall after the stabilization of internal dimensions in the models with low unification scale (M ~ 1 TeV), the inflaton field must be extremely light. This problem may disappear In models with intermediate (M ~10^{11} GeV) to high (M ~ 10^{16} GeV) unification scale. However, in all of these cases the wall inflation does not provide a complete solution to the horizon and flatness problems. To solve them, there must be a stage of inflation in the bulk before the compactification of internal dimensions.Comment: 4 pages, revtex, minor modification

    Inflation with Ω1\Omega \not = 1

    Full text link
    We discuss various models of inflationary universe with Ω1\Omega \not = 1. A homogeneous universe with Ω>1\Omega > 1 may appear due to creation of the universe "from nothing" in the theories where the effective potential becomes very steep at large ϕ\phi, or in the theories where the inflaton field ϕ\phi nonminimally couples to gravity. Inflation with Ω<1\Omega < 1 generally requires intermediate first order phase transition with the bubble formation, and with a second stage of inflation inside the bubble. It is possible to realize this scenario in the context of a theory of one scalar field, but typically it requires artificially bent effective potentials and/or nonminimal kinetic terms. It is much easier to obtain an open universe in the models involving two scalar fields. However, these models have their own specific problems. We propose three different models of this type which can describe an open homogeneous inflationary universe.Comment: 29 pages, LaTeX, parameters of one of the models are slightly modifie

    Second Order Gauge-Invariant Perturbations during Inflation

    Get PDF
    The evolution of gauge invariant second-order scalar perturbations in a general single field inflationary scenario are presented. Different second order gauge invariant expressions for the curvature are considered. We evaluate perturbatively one of these second order curvature fluctuations and a second order gauge invariant scalar field fluctuation during the slow-roll stage of a massive chaotic inflationary scenario, taking into account the deviation from a pure de Sitter evolution and considering only the contribution of super-Hubble perturbations in mode-mode coupling. The spectra resulting from their contribution to the second order quantum correlation function are nearly scale-invariant, with additional logarithmic corrections to the first order spectrum. For all scales of interest the amplitude of these spectra depend on the total number of e-folds. We find, on comparing first and second order perturbation results, an upper limit to the total number of e-folds beyond which the two orders are comparable.Comment: 17 pages, 6 figures. Final version to appear in Phys. Rev.

    Pre-Big-Bang Requires the Universe to be Exponentially Large From the Very Beginning

    Get PDF
    We show that in a generic case of the pre-big-bang scenario, inflation will solve cosmological problems only if the universe at the onset of inflation is extremely large and homogeneous from the very beginning. The size of a homogeneous part of the universe at the beginning of the stage of pre-big-bang (PBB) inflation must be greater than 101910^{19} lsl_s, where lsl_s is the stringy length. The total mass of an inflationary domain must be greater than 1072Ms10^{72} M_{s}, where Msls1M_{s} \sim l_s^{-1}. If the universe is initially radiation dominated, then its total entropy at that time must be greater than 106810^{68}. If the universe is closed, then at the moment of its formation it must be uniform over 102410^{24} causally disconnected domains. The natural duration of the PBB stage in this scenario is Mp1M_p^{-1}. We argue that the initial state of the open PBB universe could not be homogeneous because of quantum fluctuations. Independently of the issue of homogeneity, one must introduce two large dimensionless parameters, g02>1053g_0^{-2} > 10^{53}, and B>1091B > 10^{91}, in order to solve the flatness problem in the PBB cosmology. A regime of eternal inflation does not occur in the PBB scenario. This should be compared with the simplest versions of the chaotic inflation scenario, where the regime of eternal inflation may begin in a universe of size O(Mp1)O(M_{p}^{-1}) with vanishing initial radiation entropy, mass O(Mp)O(M_p), and geometric entropy O(1). We conclude that the current version of the PBB scenario cannot replace usual inflation even if one solves the graceful exit problem in this scenario.Comment: 14 pages, a discussion of the flatness problem in the PBB cosmology is adde

    Quintessential inflation from 5D warped product spaces on a dynamical foliation

    Full text link
    Assuming the existence of a 5D purely kinetic scalar field on the class of warped product spaces we investigate the possibility of mimic both an inflationary and a quintessential scenarios on 4D hypersurfaces, by implementing a dynamical foliation on the fifth coordinate instead of a constant one. We obtain that an induced chaotic inflationary scenario with a geometrically induced scalar potential and an induced quasi-vacuum equation of state on 4D dynamical hypersurfaces is possible. While on a constant foliation the universe can be considered as matter dominated today, in a family of 4D dynamical hypersurfaces the universe can be passing for a period of accelerated expansion with a deceleration parameter nearly -1. This effect of the dynamical foliation results negligible at the inflationary epoch allowing for a chaotic scenario and becomes considerable at the present epoch allowing a quintessential scenario.Comment: 7 pages, 1 figure Accepted for publication in Modern Physics Letters

    Quantum Cosmology with Yang-Mills Fields

    Full text link
    We examine an extension of the ideas of quantum cosmology and, in particular, the proposal of Hartle and Hawking for the boundary conditions of the Universe, to models which incorporate Yang-Mills fields. Inhomogeneous perturbations about a homogeneous, isotropic minisuperspace background model are considered, by expanding the Yang-Mills fields in harmonics of the spatial directions which are taken to be three-spheres. The expansions are made explicit for SO(N)SO(N) gauge fields thereby obtaining formulae compatible with the formalism conventionally used in quantum cosmology. We apply these results to the gauge group SO(3)SO(3) and derive the Lagrangian and the semi-classical wave function for this special case.Comment: 33 pages, ENSLAPP-A-434/93, TUM-TH-160/93, NTUA 43/9

    Causality and Cosmic Inflation

    Get PDF
    In the context of inflationary models with a pre-inflationary stage, in which the Einstein equations are obeyed, the weak energy condition is satisfied, and spacetime topology is trivial, we argue that homogeneity on super-Hubble scales must be assumed as an initial condition. Models in which inflation arises from field dynamics in a Friedman-Robertson-Walker background fall into this class but models in which inflation originates at the Planck epoch, {\it eg.} chaotic inflation, may evade this conclusion. Our arguments rest on causality and general relativistic constraints on the structure of spacetime. We discuss modifications to existing scenarios that may avoid the need for initial large-scale homogeneity.Comment: 4 pages, 3 figures, RevTeX, expanded and sharpened discussion of result, figures improved, references adde

    The Development of Equilibrium After Preheating

    Full text link
    We present a fully nonlinear study of the development of equilibrium after preheating. Preheating is the exponentially rapid transfer of energy from the nearly homogeneous inflaton field to fluctuations of other fields and/or the inflaton itself. This rapid transfer leaves these fields in a highly nonthermal state with energy concentrated in infrared modes. We have performed lattice simulations of the evolution of interacting scalar fields during and after preheating for a variety of inflationary models. We have formulated a set of generic rules that govern the thermalization process in all of these models. Notably, we see that once one of the fields is amplified through parametric resonance or other mechanisms it rapidly excites other coupled fields to exponentially large occupation numbers. These fields quickly acquire nearly thermal spectra in the infrared, which gradually propagates into higher momenta. Prior to the formation of total equilibrium, the excited fields group into subsets with almost identical characteristics (e.g. group effective temperature). The way fields form into these groups and the properties of the groups depend on the couplings between them. We also studied the onset of chaos after preheating by calculating the Lyapunov exponent of the scalar fields.Comment: 15 pages, 23 figure
    corecore