Abstract

We show that in a generic case of the pre-big-bang scenario, inflation will solve cosmological problems only if the universe at the onset of inflation is extremely large and homogeneous from the very beginning. The size of a homogeneous part of the universe at the beginning of the stage of pre-big-bang (PBB) inflation must be greater than 101910^{19} lsl_s, where lsl_s is the stringy length. The total mass of an inflationary domain must be greater than 1072Ms10^{72} M_{s}, where Msls1M_{s} \sim l_s^{-1}. If the universe is initially radiation dominated, then its total entropy at that time must be greater than 106810^{68}. If the universe is closed, then at the moment of its formation it must be uniform over 102410^{24} causally disconnected domains. The natural duration of the PBB stage in this scenario is Mp1M_p^{-1}. We argue that the initial state of the open PBB universe could not be homogeneous because of quantum fluctuations. Independently of the issue of homogeneity, one must introduce two large dimensionless parameters, g02>1053g_0^{-2} > 10^{53}, and B>1091B > 10^{91}, in order to solve the flatness problem in the PBB cosmology. A regime of eternal inflation does not occur in the PBB scenario. This should be compared with the simplest versions of the chaotic inflation scenario, where the regime of eternal inflation may begin in a universe of size O(Mp1)O(M_{p}^{-1}) with vanishing initial radiation entropy, mass O(Mp)O(M_p), and geometric entropy O(1). We conclude that the current version of the PBB scenario cannot replace usual inflation even if one solves the graceful exit problem in this scenario.Comment: 14 pages, a discussion of the flatness problem in the PBB cosmology is adde

    Similar works