The evolution of gauge invariant second-order scalar perturbations in a
general single field inflationary scenario are presented. Different second
order gauge invariant expressions for the curvature are considered. We evaluate
perturbatively one of these second order curvature fluctuations and a second
order gauge invariant scalar field fluctuation during the slow-roll stage of a
massive chaotic inflationary scenario, taking into account the deviation from a
pure de Sitter evolution and considering only the contribution of super-Hubble
perturbations in mode-mode coupling. The spectra resulting from their
contribution to the second order quantum correlation function are nearly
scale-invariant, with additional logarithmic corrections to the first order
spectrum. For all scales of interest the amplitude of these spectra depend on
the total number of e-folds. We find, on comparing first and second order
perturbation results, an upper limit to the total number of e-folds beyond
which the two orders are comparable.Comment: 17 pages, 6 figures. Final version to appear in Phys. Rev.