33 research outputs found

    Uncertainties related to the representation of momentum transport in shallow convection

    Get PDF
    Convective momentum transport (CMT) has mostly been studied for deep convection, whereas little is known about its characteristics and importance in shallow convection. In this study, CMT by shallow convection is investigated by analyzing both data from large-eddy simulations (LESs) and reforecasts performed with the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). In addition, the central terms underlying the bulk mass-flux parametrization of CMT are evaluated offline. Further, the uncertainties related to the representation of CMT are explored by running the stochastically perturbed parametrizations (SPP) approach of the IFS. The analyzed cases exhibit shallow convective clouds developing within considerable low-level wind shear. Analysis of the momentum fluxes in the LES data reveals significant momentum transport by the convection in both cases, which is directed downgradient despite substantial organization of the cloud field. A detailed inspection of the convection parametrization reveals a very good representation of the entrainment and detrainment rates and an appropriate representation of the convective mass and momentum fluxes. To determine the correct values of mass-flux and in-cloud momentum at the cloud base in the parametrization yet remains challenging. The spread in convection-related quantities generated by the SPP is reasonable and addresses many of the identified uncertainties.ISSN:1942-246

    Analysis of diagnostic climate model cloud parameterisations using large-eddy simulations: Analysis of diagnostic climate model cloud parameterisations usinglarge-eddy simulations

    Get PDF
    Current climate models often predict fractional cloud cover on the basis of a diagnostic probability density function (PDF) describing the subgrid-scale variability of the total water specific humidity, qt, favouring schemes with limited complexity. Standard shapes are uniform or triangular PDFs the width of which is assumed to scale with the gridbox mean qt or the grid-box mean saturation specific humidity, qs. In this study, the qt variability is analysed from large-eddy simulations for two stratocumulus, two shallow cumulus, and one deep convective cases. We find that in most cases, triangles are a better approximation to the simulated PDFs than uniform distributions. In two of the 24 slices examined, the actual distributions were so strongly skewed that the simple symmetric shapes could not capture the PDF at all. The distribution width for either shape scales acceptably well with both the mean value of qt and qs, the former being a slightly better choice. The qt variance is underestimated by the fitted PDFs, but overestimated by the existing parameterisations. While the cloud fraction is in general relatively well diagnosed from fitted or parameterised uniform or triangular PDFs, it fails to capture cases with small partial cloudiness, and in 10 – 30% of the cases misdiagnoses clouds in clear skies or vice-versa. The results suggest choosing a parameterisation with a triangular shape, where the distribution width would scale with the grid-box mean qt using a scaling factor of 0.076. This, however, is subject to the caveat that the reference simulations examined here were partly for rather small domains and driven by idealised boundary conditions

    Idealized large-eddy and convection-resolving simulations of moist convection over mountainous terrain

    Get PDF
    On summertime fair-weather days, thermally driven wind systems play an important role in determining the initiation of convection and the occurrence of localized precipitation episodes over mountainous terrain. This study compares the mechanisms of convection initiation and precipitation development within a thermally driven flow over an idealized double-ridge system in large-eddy (LESs) and convection-resolving (CRM) simulations. First, LES at a horizontal grid spacing of 200 m is employed to analyze the developing circulations and associated clouds and precipitation. Second, CRM simulations at horizontal grid length of 1 km are conducted to evaluate the performance of a kilometer-scale model in reproducing the discussed mechanisms. Mass convergence and a weaker inhibition over the two ridges flanking the valley combine with water vapor advection by upslope winds to initiate deep convection. In the CRM simulations, the spatial distribution of clouds and precipitation is generally well captured. However, if the mountains are high enough to force the thermally driven flow into an elevated mixed layer, the transition to deep convection occurs faster, precipitation is generated earlier, and surface rainfall rates are higher compared to the LES. Vertical turbulent fluxes remain largely unresolved in the CRM simulations and are underestimated by the model, leading to stronger upslope winds and increased horizontal moisture advection toward the mountain summits. The choice of the turbulence scheme and the employment of a shallow convection parameterization in the CRM simulations change the strength of the upslope winds, thereby influencing the simulated timing and intensity of convective precipitation

    A Groundwater and Runoff Formulation for Weather and Climate Models

    No full text
    Soil moisture modifies the state of the atmosphere and thus plays a major role in the climate system. Its spatial distribution is strongly modulated by the underlying orography. Yet the vertical transport of soil water and especially the generation of groundwater runoff at the bottom of the soil column are currently treated in a crude way in most atmospheric and climate models. This potentially leads to large biases in near‐surface temperatures during midlatitude summertime conditions, when the soils may dry out. Here we present a new formulation for groundwater and runoff formation. It is based on Richards equation, allows for saturated aquifers, includes a slope‐dependent groundwater discharge, and enables a subgrid‐scale treatment of the underlying orography. The proposed numerical implementation ensures a physically consistent treatment of the water fluxes in the soil column, using ideas from flux‐corrected transport methodologies. An implementation of this formulation into TERRA_ML, the land surface model of the regional climate model of the COnsortium for Small‐scale MOdeling (COSMO) in CLimate Mode (CCLM), is validated both in idealized and real‐case simulations. Idealized simulations demonstrate the important role of the lower boundary condition at the bottom of the soil column and display a physically meaningful recharge and discharge of the saturated zone. Validation against measurements at selected stations shows an improved seasonal evolution of soil water content. Finally, decade‐long climate simulations over Europe exhibit a realistic representation of the groundwater distribution across continental scales and mountainous areas, an improved annual cycle of surface latent heat fluxes, and as a consequence reductions of long‐standing biases in near‐surface temperatures in semiarid regions.ISSN:1942-246

    A Numerical Analysis of Six Physics-Dynamics Coupling Schemes for Atmospheric Models

    No full text
    Six strategies to couple the dynamical core with physical parameterizations in atmospheric models are analyzed from a numerical perspective. Thanks to a suitably designed theoretical framework featuring a high level of abstraction, the truncation error analysis and the linear stability study are carried out under weak assumptions. Indeed, second-order conditions are derived which are not influenced either by the specific formulation of the governing equations, nor by the number of parameterizations, nor by the structural design and implementation details of the time-stepping methods. The theoretical findings are verified on two idealized test beds. Particularly, a hydrostatic model in isentropic coordinates is used for vertical slice simulations of a moist airflow past an isolated mountain. Self-convergence tests show that the sensitivity of the prognostic variables to the coupling scheme may vary. For those variables (e.g., momentum) whose evolution is mainly driven by the dry dynamics, the truncation error associated with the dynamical core dominates and hides the error due to the coupling. In contrast, the coupling error of moist variables (e.g., the precipitation rate) emerges gradually as the spatio-temporal resolution increases. Eventually, each coupling scheme tends toward the formal order of accuracy, upon a careful treatment of the grid cell condensation. Indeed, the well-established saturation adjustment may cap the convergence rate to first order. A prognostic formulation of the condensation and evaporation process is derived from first principles. This solution is shown effective to alleviate the convergence issues in our experiments. Potential implications for a complete forecasting system are discussed.ISSN:1942-246

    The influence of the resolution of orography on the simulation of orographic moist convection

    No full text
    Currently, major efforts are under way to refine the horizontal resolution of weather and climate models to kilometer-scale grid spacing (Dx). Besides refining the representation of the atmospheric dynamics and enabling the use of explicit convection, this will also provide higher resolution in the representation of orography. This study investigates the influence of these resolution increments on the simulation of orographic moist convection. Nine days of fair-weather thermally driven flow over the Alps are analyzed. Two sets of simulations with the COSMO model are compared, each consisting of three runs at Dx of 4.4, 2.2, and 1.1 km: one set using a fixed representation of orography at a resolution of 8.8 km, and one with varying representation at the resolution of the computational mesh. The spatial distribution of precipitation during daytime is only marginally affected by the orographic details, but nighttime convection to the south of the Alps-triggered by cold-air outflow from the valleys-is very sensitive to orography and precipitation is enhanced if more detailed orography is provided. During daytime, the onset of precipitation is delayed. The amplitude of the diurnal cycle of precipitation is reduced, even though more moisture converges toward the Alpine region during the afternoon. The hereby accumulated moisture sustains precipitation during the evening and nighttime over the surrounding plains. For these differences, the effects of changes in orographic detail are more important than changes in grid spacing. In addition, the individual convective cells are weaker, but their number increases with higher resolved orography. © 2020 American Meteorological SocietyISSN:1520-0493ISSN:0027-064
    corecore