175 research outputs found

    Fast pyrolysis of glucose‐based carbohydrates with added NaCl part 1: Experiments and development of a mechanistic model

    Get PDF
    Sodium ions, one of the natural inorganic constituents in lignocellulosic biomass, significantly alter pyrolysis behavior and resulting chemical speciation. Here, experiments were conducted using a micropyrolyzer to investigate the catalytic effects of NaCl on fast pyrolysis of glucose‐based carbohydrates (glucose, cellobiose, maltohexaose, and cellulose), and on a major product of cellulose pyrolysis, levoglucosan (LVG). A mechanistic model that addressed the significant catalytic effects of NaCl on the product distribution was developed. The model incorporated interactions of Na+ with cellulosic chains and low molecular weight species, reactions mediated by Na+ including dehydration, cyclic/Grob fragmentation, ring‐opening/closing, isomerization, and char formation, and a degradation network of LVG in the presence of Na+. Rate coefficients of elementary steps were specified based on Arrhenius parameters. The mechanistic model for cellulose included 768 reactions of 222 species, which included 252 reactions of 150 species comprising the mechanistic model of glucose decomposition in the presence of NaCl

    Fast pyrolysis of glucose‐based carbohydrates with added NaCl part 2: Validation and evaluation of the mechanistic model

    Get PDF
    A mechanistic model considering the significant catalytic effects of Na+ on fast pyrolysis of glucose‐based carbohydrates was developed in Part 1 of this study. A computational framework based on continuous distribution kinetics and mass action kinetics was constructed to solve the mechanistic model. Agreement between model yields of various pyrolysis products with experimental data from fast pyrolysis of glucose‐based carbohydrates dosed with NaCl ranging from 0–0.34 mmol/g at 500 °C validated the model and demonstrated the robustness and extendibility of the mechanistic model. The model was able to capture the yields of major and minor products as well as their trends across NaCl concentrations. Modeling results showed that Na+ accelerated the rate of decomposition and reduced the time for complete thermoconversion of carbohydrates. The sharp reduction in the yield of levoglucosan (LVG) from fast pyrolysis of cellulose in the presence of NaCl was mainly caused by reduced decomposition of cellulose chains via end‐chain initiation and depropagation due to Na+ favoring competing dehydration reactions. Analysis of the contributions of reaction pathways showed that the decomposition of LVG made a minor contribution to its yield reduction and contributed less than 0.5% to the final yield of glycolaldehyde from fast pyrolysis of glucose‐based carbohydrates in the presence of NaCl

    Nutrition Trends in Kidney Transplant Recipients: the Importance of Dietary Monitoring and Need for Evidence-Based Recommendations

    Get PDF
    Many physiological properties of the renal system influence nutrient metabolism, elimination, and homeostasis. Kidney failure poses significant challenges to maintaining adequate nutrition, most of which transplantation ameliorates. Comprehensive recommendations for managing nutritional derangements for patients with chronic kidney disease and end stage renal disease exist; however, there are only sparse guidelines for post-transplant malnutrition and adverse outcomes. Not only are guidelines limited, but little is known about dietary trends of post-kidney transplant recipients. This review describes guidelines for prevalent metabolic and nutritional complications post-kidney transplantation and also evaluates changes in caloric intake and diet composition after transplantation. This topic is important because nutrition influences allograft function and a number of cardiovascular risk factors including blood pressure, dyslipidemia, weight, and diabetes. In addition, many dietary recommendations and modifiable lifestyle changes should be tailored for specific complications of transplant patients, namely immunosuppression side effects, dietary restrictions, and electrolyte imbalances

    Opioid initiation and injection transition in rural northern New England: A mixed-methods approach

    Get PDF
    BACKGROUND: In rural northern New England, located in the northeastern United States, the overdose epidemic has accelerated with the introduction of fentanyl. Opioid initiation and transition to opioid injection have been studied in urban settings. Little is known about opioid initiation and transition to injection drug use in rural northern New England. METHODS: This mixed-methods study characterized opioid use and drug injection in 11 rural counties in Massachusetts, Vermont, and New Hampshire between 2018 and 2019. People who use drugs completed audio computer-assisted self-interview surveys on substance use and risk behaviors (n = 589) and shared personal narratives through in-depth interviews (n = 22). The objective of the current study is to describe initiation of opioid use and drug injection in rural northern New England. RESULTS: Median age of first injection was 22 years (interquartile range 18-28 years). Key themes from in-depth interviews that led to initiating drug injection included normalization of drug use in families and communities, experiencing trauma, and abrupt discontinuation of an opioid prescription. Other factors that led to a transition to injecting included lower cost, increased effect/ rush, greater availability of heroin/ fentanyl, and faster relief of withdrawal symptoms with injection. CONCLUSIONS: Trauma, normalization of drug use, over-prescribing of opioids, and abrupt discontinuation challenge people who use drugs in rural northern New England communities. Inadequate opioid tapering may increase transition to non-prescribed drug use. The extent and severity of traumatic experiences described highlights the importance of enhancing trauma-informed care in rural areas

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∌8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    Improving Outcomes in Infants of HIV-Infected Women in a Developing Country Setting

    Get PDF
    Since 1999 GHESKIO, a large voluntary counseling and HIV testing center in Port-au-Prince, Haiti, has had an ongoing collaboration with the Haitian Ministry of Health to reduce the rate of mother to child HIV transmission. There are limited data on the ability to administer complex regimens for reducing mother to child transmission and on risk factors for continued transmission and infant mortality within programmatic settings in developing countries.We analyzed data from 551 infants born to HIV-infected mothers seen at GHESKIO, between 1999 and 2005. HIV-infected mothers and their infants were given "short-course" monotherapy with antiretrovirals for prophylaxis; and, since 2003, highly active antiretroviral therapy (HAART) when clinical or laboratory indications were met. Infected women seen in the pre-treatment era had 27% transmission rates, falling to 10% in this cohort of 551 infants, and to only 1.9% in infants of women on HAART. Mortality rate after HAART introduction (0.12 per year of follow-up [0.08-0.16]) was significantly lower than the period before the availability of such therapy (0.23 [0.16-0.30], P<0.0001). The effects of maternal health, infant feeding, completeness of prophylaxis, and birth weight on mortality and transmission were determined using univariate and multivariate analysis. Infant HIV-1 infection and low birth weight were associated with infant mortality in less than 15 month olds in multivariate analysis.Our findings demonstrate success in prevention of mother-to-child HIV transmission and mortality in a highly resource constrained setting. Elements contributing to programmatic success include provision of HAART in the context of a comprehensive program with pre and postnatal care for both mother and infant

    Epilepsy is related to theta band brain connectivity and network topology in brain tumor patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both epilepsy patients and brain tumor patients show altered functional connectivity and less optimal brain network topology when compared to healthy controls, particularly in the theta band. Furthermore, the duration and characteristics of epilepsy may also influence functional interactions in brain networks. However, the specific features of connectivity and networks in tumor-related epilepsy have not been investigated yet. We hypothesize that epilepsy characteristics are related to (theta band) connectivity and network architecture in operated glioma patients suffering from epileptic seizures. Included patients participated in a clinical study investigating the effect of levetiracetam monotherapy on seizure frequency in glioma patients, and were assessed at two time points: directly after neurosurgery (t1), and six months later (t2). At these time points, magnetoencephalography (MEG) was recorded and information regarding clinical status and epilepsy history was collected. Functional connectivity was calculated in six frequency bands, as were a number of network measures such as normalized clustering coefficient and path length.</p> <p>Results</p> <p>At the two time points, MEG registrations were performed in respectively 17 and 12 patients. No changes in connectivity or network topology occurred over time. Increased theta band connectivity at t1 and t2 was related to a higher total number of seizures. Furthermore, higher number of seizures was related to a less optimal, more random brain network topology. Other factors were not significantly related to functional connectivity or network topology.</p> <p>Conclusions</p> <p>These results indicate that (pathologically) increased theta band connectivity is related to a higher number of epileptic seizures in brain tumor patients, suggesting that theta band connectivity changes are a hallmark of tumor-related epilepsy. Furthermore, a more random brain network topology is related to greater vulnerability to seizures. Thus, functional connectivity and brain network architecture may prove to be important parameters of tumor-related epilepsy.</p

    The Connectome Visualization Utility: Software for Visualization of Human Brain Networks

    Get PDF
    In analysis of the human connectome, the connectivity of the human brain is collected from multiple imaging modalities and analyzed using graph theoretical techniques. The dimensionality of human connectivity data is high, and making sense of the complex networks in connectomics requires sophisticated visualization and analysis software. The current availability of software packages to analyze the human connectome is limited. The Connectome Visualization Utility (CVU) is a new software package designed for the visualization and network analysis of human brain networks. CVU complements existing software packages by offering expanded interactive analysis and advanced visualization features, including the automated visualization of networks in three different complementary styles and features the special visualization of scalar graph theoretical properties and modular structure. By decoupling the process of network creation from network visualization and analysis, we ensure that CVU can visualize networks from any imaging modality. CVU offers a graphical user interface, interactive scripting, and represents data uses transparent neuroimaging and matrix-based file types rather than opaque application-specific file formats

    Sodium ion interactions with aqueous glucose: Insights from quantum mechanics, molecular dynamics, and experiment

    Get PDF
    In the last several decades, significant efforts have been conducted to understand the fundamental reactivity of glucose derived from plant biomass in various chemical environments for conversion to renewable fuels and chemicals. For reactions of glucose in water, it is known that inorganic salts naturally present in biomass alter the product distribution in various deconstruction processes. However, the molecular-level interactions of alkali metal ions and glucose are unknown. These interactions are of physiological interest as well, for example, as they relate to cation-glucose cotransport. Here, we employ quantum mechanics (QM) to understand the interaction of a prevalent alkali metal, sodium, with glucose from a structural and thermodynamic perspective. The effect on B-glucose is subtle: a sodium ion perturbs bond lengths and atomic partial charges less than rotating a hydroxymethyl group. In contrast, the presence of a sodium ion significantly perturbs the partial charges of α-glucose anomeric and ring oxygens. Molecular dynamics (MD) simulations provide dynamic sampling in explicit water, and both the QM and the MD results show that sodium ions associate at many positions with respect to glucose with reasonably equivalent propensity. This promiscuous binding nature of Na + suggests that computational studies of glucose reactions in the presence of inorganic salts need to ensure thorough sampling of the cation positions, in addition to sampling glucose rotamers. The effect of NaCl on the relative populations of the anomers is experimentally quantified with light polarimetry. These results support the computational findings that Na + interacts similarly with a- and B-glucose
    • 

    corecore