156 research outputs found

    The use of organizational assessments in improving patient and staff experiences in the ambulatory care setting

    Get PDF
    As the needs of patients evolve, healthcare organizations must diversify their approach to improving patient experience. Their programs should encompass the medical, mental, spiritual, and emotional needs of patients and their family members and the staff who care for patients. This case study examines the results of the evaluation to assess the effectiveness of organizational patient experience efforts. The Beryl Institute’s Experience Assessment was the evaluation tool administered and revealed the areas in which the organization was performing well and where improvements were needed. In collaboration with Ambulatory Care and Finance, the Office of Patient Experience targeted the Adult Primary Care and Orthopedic outpatient clinics for this assessment and followed-up with improvement projects to address the areas of opportunities identified. We administered the Extended DiSC¼ Assessment to the leaders in all departments that function within Ambulatory Care, to support the success of the improvement projects. The DiSC¼ assessment enables each leader to understand their communication style and gain an understanding of the ways they could improve communication with the leaders they collaborated with, who have different communication styles. Both assessments are geared towards self-examination and prodded the organization towards taking an honest look at how they functioned collectively and on an individual level and helped to clarify their perspective and reiterate their core values as a patient experience organization. The use of the Experience Assessment enabled an objective evaluation of the team’s readiness for patient experience improvements, in conjunction with the insights gleaned from the Extended DiSC¼ assessment. Experience Framework This article is associated with the Staff & Provider Engagement lens of The Beryl Institute Experience Framework. (http://bit.ly/ExperienceFramework) Access other PXJ articles related to this lens. Access other resources related to this lens

    Spectroscopic and metal binding properties of a de novo metalloprotein binding a tetrazinc cluster

    Get PDF
    De novo design provides an attractive approach, which allows one to test and refine the principles guiding metalloproteins in defining the geometry and reactivity of their metal ion cofactors. Although impressive progress has been made in designing proteins that bind transition metal ions including iron–sulfur clusters, the design of tetranuclear clusters with oxygen‐rich environments remains in its infancy. In previous work, we described the design of homotetrameric four‐helix bundles that bind tetra‐Zn2+ clusters. The crystal structures of the helical proteins were in good agreement with the overall design, and the metal‐binding and conformational properties of the helical bundles in solution were consistent with the crystal structures. However, the corresponding apo‐proteins were not fully folded in solution. In this work, we design three peptides, based on the crystal structure of the original bundles. One of the peptides forms tetramers in aqueous solution in the absence of metal ions as assessed by CD and NMR. It also binds Zn2+ in the intended stoichiometry. These studies strongly suggest that the desired structure has been achieved in the apo state, providing evidence that the peptide is able to actively impart the designed geometry to the metal cluster

    A group-theoretic approach to the origin of chirality-induced spin selectivity in non-magnetic molecular junctions

    Get PDF
    Spin-orbit coupling gives rise to a range of spin-charge interconversion phenomena in non-magnetic systems where spatial symmetries are reduced or absent. Chirality-induced spin selectivity (CISS), a term that generically refers to a spin-dependent electron transfer in non-magnetic chiral systems, is one such case, appearing in a variety of seemingly unrelated situations ranging from inorganic materials to molecular devices. In particular, the origin of CISS in molecular junctions is a matter of an intense current debate. Here we contend that the necessary conditions for the CISS effect to appear can be generally and fully understood on the basis of a complete symmetry analysis of the molecular junction, and not only of the molecule. Our approach, which draws on the use of point-group symmetries within the scattering formalism for transport, shows that electrode symmetries are as important as those of the molecule when it comes to the emergence of a spin-polarization and, therefore, a possible appearance of CISS. It turns out that standalone metallic nanocontacts can exhibit spin-polarization when relative rotations are introduced which reduce the symmetry. As a corollary, molecular junctions with achiral\textbf{achiral} molecules can also exhibit spin polarization along the direction of transport, provided that the whole junction is chiral. This formalism also allows to predict the qualitative changes on the spin-polarization upon substitution of a chiral molecule in the junction with its enantiomeric partner. Quantum transport calculations based on density functional theory corroborate all of our predictions and provide further quantitative insight.Comment: 19 pages, 4 figures, 1 tabl

    High-level HIV-1 Nef transient expression in Nicotiana benthamiana using the P19 gene silencing suppressor protein of Artichoke Mottled Crinckle Virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, different HIV antigens have been successfully expressed in plants by either stable transformation or transient expression systems. Among HIV proteins, Nef is considered a promising target for the formulation of a multi-component vaccine due to its implication in the first steps of viral infection. Attempts to express Nef as a single protein product (not fused to a stabilizing protein) in transgenic plants resulted in disappointingly low yields (about 0.5% of total soluble protein). In this work we describe a transient expression system based on co-agroinfiltration of plant virus gene silencing suppressor proteins in <it>Nicotiana benthamiana</it>, followed by a two-step affinity purification protocol of plant-derived Nef.</p> <p>Results</p> <p>The effect of three gene silencing viral suppressor proteins (P25 of Potato Virus X, P19 of either Artichoke Mottled Crinckle virus and Tomato Bushy Stunt virus) on Nef transient expression yield was evaluated. The P19 protein of Artichoke Mottled Crinckle virus (AMCV-P19) gave the highest expression yield in vacuum co-agroinfiltration experiments reaching 1.3% of total soluble protein, a level almost three times higher than that previously reported in stable transgenic plants. The high yield observed in the co-agroinfiltrated plants was correlated to a remarkable decrease of Nef-specific small interfering RNAs (siRNAs) indicating an effective modulation of RNA silencing mechanisms by AMCV-P19. Interestingly, we also showed that expression levels in top leaves of vacuum co-agroinfiltrated plants were noticeably reduced compared to bottom leaves. Moreover, purification of Nef from agroinfiltrated tissue was achieved by a two-step immobilized metal ion affinity chromatography protocol with yields of 250 ng/g of fresh tissue.</p> <p>Conclusion</p> <p>We demonstrated that expression level of HIV-1 Nef in plant can be improved using a transient expression system enhanced by the AMCV-P19 gene silencing suppressor protein. Moreover, plant-derived Nef was purified, with enhanced yield, exploiting a two-step purification protocol. These results represent a first step towards the development of a plant-derived HIV vaccine.</p

    Site-selective indole oxidation catalyzed by a Mn-containing artificial metalloenzyme

    Get PDF
    Metalloenzymes have become attractive tools for application in oxidation catalysis, since a complex protein environment exerts a highly specific control on the reactivity of the metal center.1 Compared to synthetic catalysts, enzymes cover only a limited repertoire of reactions and substrates. The development of hybrid catalysts, obtained by anchoring catalytic metal complexes to native or artificial biomolecular scaffolds, is aimed at merging the advantages of both systems while overcoming the drawbacks.2,3 In this area, our research is devoted to the development of peptide-porphyrin conjugates resembling natural heme-proteins, called “Mimochromes”.3,4 Among them, Mimochrome VIa (MC6a) is the most promising catalyst, thanks to its robust but flexible scaffold. MC6a, in its MnIII complex, (Mn-MC6a) is an efficient catalyst with enzyme-like properties, because fast and chemoselective reactions with a peroxygenase-like mechanism were found in the oxidation of thioethers. Even more remarkably, Mn-MC6a selectively exhibits either peroxygenase- or catalase-like activity depending on the reaction conditions. Here we present the oxidation of indole and its derivatives catalyzed by Mn-MC6a, with the aim of exploiting the catalytic properties of this artificial enzyme in reactions with potential synthetic applications. Indole is one of the most common heterocyclic scaffolds available in nature. It occurs in several natural compounds (such as alkaloids and plant hormones) and is part of many pharmaceuticals.5-8 Despite the structural simplicity of this molecule, indole oxidation leads to a large number of products, including mono- and di-oxygenated compounds. Indole oxidation has been studied with both biological5,6 and synthetic7,8 catalysts. In all the approaches described so far, no or weak selectivity toward any of the oxidation products has been reported.5-8 Conversely, Mn-MC6a is able to oxidize indole under unprecedented site-selective conditions, yielding to 3-oxindolenine as single product. Additionally, the reaction selectivity is dramatically altered when 1- or 3-methyl-substituted indoles are used as substrates. A detailed mechanistic analysis will help to rationalize the outstanding selectivity of the catalyst. References: 1. Sheldon, R. A. and Woodley, J. M. Chem. Rev. 2018, 118, 801–838. 2. Schwizer, F. et al. Chem. Rev. 2018, 118, 142-231. 3. Chino, M. et al. Biopolymers 2018 (doi: 10.1002/bip.23107). 4. Nastri, F. et al. Chem. Soc. Rev., 2016, 45, 5020-5054. 5. Kuo, H. H. and Mauk, A. G.; Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 13966–13971. 6. Barrios, D. A. et al. J. Am. Chem. Soc. 2014, 136, 7914-7925. 7. Linhares, M. et al. Appl. Catal. A. 2014, 470, 427–433. 8. Poon L. C.-H. et al. J. Am. Chem. Soc. 2011, 133, 1877–1884

    The Metallicity of High Redshift Galaxies: The Abundance of Zinc in 34 Damped Lyman Alpha Systems from z = 0.7 to 3.4

    Full text link
    We report new observations of ZnII and CrII absorption lines in 10 damped \lya systems (DLAs), mostly at redshift z_{abs} \simgt 2.5 . By combining these results with those from our earlier survey (Pettini et al. 1994) and other recent data, we construct a sample of 34 measurements (or upper limits) of the Zn abundance relative to hydrogen [Zn/H]; the sample includes more than one third of the total number of DLAs known. The plot of the abundance of Zn as a function of redshift reinforces the two main findings of our previous study. (1) Damped \lya systems are mostly metal-poor, at all redshifts sampled; the column density weighted mean for the whole data set is [Zn/H] =−1.13±0.38= -1.13 \pm 0.38 (on a logarithmic scale), or approximately 1/13 of solar. (2) There is a large spread, by up to two orders of magnitude, in the metallicities we measure at essentially the same redshifts. We propose that damped \lya systems are drawn from a varied population of galaxies of different morphological types and at different stages of chemical evolution, supporting the idea of a protracted epoch of galaxy formation. At redshifts z \simgt 2 the typical metallicity of the damped \lya systems is in agreement with expectations based on the consumption of HI gas implied by the recent measurements of ΩDLA\Omega_{DLA} by Storrie-Lombardi et al. (1996a), and with the metal ejection rates in the universe at these epochs deduced by Madau (1996) from the ultraviolet luminosities of high redshift galaxies revealed by deep imaging surveys. There are indications in our data for an increase in the mean metallicity of the damped \lya systems from z>3z > 3 to ≈2\approx 2, consistent with the rise in the comoving star formation rate indicated by the relative numbers of UU and BB drop-outs in the Hubble Deep Field. Although such comparisons are still tentative, it appears that these different avenues for exploring the early evolution of galaxies give a broadly consistent picture.Comment: 51 pages, LaTeX, 9 Postscript Figures. Accepted for publication in the Astrophysical Journa
    • 

    corecore