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ABSTRACT: Spin−orbit coupling gives rise to a range of spin-
charge interconversion phenomena in nonmagnetic systems where
certain spatial symmetries are reduced or absent. Chirality-induced
spin-selectivity (CISS), a term that generically refers to a spin-
dependent electron transfer in nonmagnetic chiral systems, is one
such case, appearing in a variety of seemingly unrelated situations
ranging from inorganic materials to molecular devices. In particular,
the origin of CISS in molecular junctions is a matter of an intense
current debate. Here, we derive a set of geometrical conditions for
this effect to appear, hinting at the fundamental role of symmetries
beyond otherwise relevant quantitative issues. Our approach, which
draws on the use of point-group symmetries within the scattering
formalism for transport, shows that electrode symmetries are as
important as those of the molecule when it comes to the emergence of a spin-polarization and, by extension, to the possible
appearance of CISS. It turns out that standalone metallic nanocontacts can exhibit spin-polarization when relative rotations
which reduce the symmetry are introduced. As a corollary, molecular junctions with achiral molecules can also exhibit spin-
polarization along the direction of transport, provided that the whole junction is chiral in a specific way. This formalism also
allows the prediction of qualitative changes of the spin-polarization upon substitution of a chiral molecule in the junction with
its enantiomeric partner. Quantum transport calculations based on density functional theory corroborate all of our predictions
and provide further quantitative insight within the single-particle framework.
KEYWORDS: spin-polarization, quantum transport, chirality, symmetry, DFT calculations, enantiomers

INTRODUCTION
Taking advantage of the spin degree of freedom in nonmagnetic
materials relies on our ability to leverage the combination of
strong spin−orbit coupling (SOC) and structural asymmetries.
Prototypical examples where this combination occurs include
free surfaces of heavy metals1,2 and topological insulators,3 two-
dimensional (2D) electron gases,4 semiconductor thin films,5 or
2D crystals with intentionally brokenmirror symmetry.6−9More
recently, chiral bulk systems such as Te crystals, where inversion
and mirror symmetries are absent, are also being explored.10 In
all these systems spin-related phenomena such as the spin
Hall11−13 or Edelstein14 effects (both inverse and direct) can
appear and serve as a basis for exploiting the full potential of spin
for spintronics applications. On the theoretical side, from basic
2D electron gas models15−17 to more sophisticated models
based on first-principles,7,18,19 many of the experimental
observations can be successfully accounted for.

Molecular junctions with chiral molecules are also a
playground for spin-charge interconversion phenomena, ex-
hibiting the so-called chirality-induced spin-selectivity (CISS)
effect. This phenomenon, involving the spin-polarization of
electrons propagating through chiral, possibly nonmagnetic
media (often molecules), has been the subject of a large number
of experimental20−27 and theoretical studies28−41 over the past
decade. The CISS effect, although it may ultimately manifest in
several ways, is usually identified with a finite magneto-
conductance measured in transport experiments under out of
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equilibrium conditions, possibly also in the linear regime.25,33

The microscopic origin of the CISS effect is being actively
debated and could be attributed to a combination of a finite bias
voltage and factors such as the chirality of the molecule, the
strength of SOC in the system, electron correlations, dephasing
effects, an underlying orbital polarization that is turned into
spin-polarization by SOC, or even solenoid-like fields inside
helical molecules.35−37,42−45 Numerically, all of these factors
should definitely play a role on the spin-polarization and the
magneto-conductance, especially in the strongly nonlinear
regime where inelastic effects are more prominent. However,
not all of them may be universally necessary features to observe
measurable spin-resolved transport quantities. At least one of
these factors, the strength of SOC in the normal metal electrode
component of the junction, has been identified in a recent
experimental study to be an important driver of a large magneto-
conductance in molecular junctions.25,27 A strong SOC in
combination with the chirality of the molecules facilitates the
appearance of a significant spin-polarization (or spin-current),
which appears to be a necessary condition for the CISS effect to
ultimately manifest in experiments. Given that chirality, a
symmetry property of the system, is at the core of the
phenomenon (and the terminology itself), it seems particularly
appropriate to employ group theory to analyze the emergence of
spin-polarization.

In this work we present a systematic and complete theoretical
analysis of the electronic spin-polarization in molecular
junctions (nonmagnetic CISS devices), based entirely on the
use of the point symmetry group of the whole system (electrodes
plus, possibly, a molecule) within the scattering formulation of
coherent quantum transport at the electronic single-particle
level. This analysis allows us to determine the restrictions
imposed by each individual spatial symmetry on the relevant
quantities of the problem, the spin-resolved conductance and
the spin-polarization.We list the possible symmetries that can be
found in the two-terminal configurations and identify those
which, when removed, allow for polarization to appear in the
general case�regardless of the system being a standalone pair of
metallic nanocontacts, or a molecular junction with a chiral or
achiral molecule. In particular, we show that a simple relative
rotation of the electrodes, leading to the removal of certain
mirror symmetries, is in general sufficient for spin-polarization
to emerge, independent of the chiral nature of the molecule or
even its sheer presence.

At a quantitative level, we present density functional theory
(DFT) calculations for realistic systems that corroborate and
quantify our theoretical predictions. We find nonzero spin-
polarizations for organic molecules as long as the electrodes, not
necessarily the molecule, present a strong SOC, specific mirror
symmetries are removed and the orbital character near the Fermi
level is not exclusively s-type. Chiral molecules, as expected, give
rise to spin-polarization in general (as long as they are connected
in suitable ways). In principle one may expect that the
substitution of a chiral molecule by its enantiomeric partner in
a molecular junction would result in the exact reversal of the
spin-polarization. However, we show that this phenomenon is
more subtle, requiring certain geometrical conditions on the
electrodes to be met as well as on the specific anchoring of the
molecules for spin-polarization to be strictly reversed.

In summary, our results grant a rather general view of the
origin of the spin-polarization in transport in molecular
junctions with nonmagnetic electrodes, constituting a global
framework with which we can predict the necessary (not in

principle sufficient) conditions under which the CISS effect can
be observed.

RESULTS AND DISCUSSION
Symmetry Considerations. We consider a two-terminal

device formed by two electrodes or contacts and, possibly, a
molecule between them. The component of the spin-polar-
ization P of the current generated at the drain electrode, along
the direction of a given spin-quantization axis is, for an incident
unpolarized current:16

P G G G G= + (1)

where Gs′,s (s, s′ ∈ {↑, ↓} referred to the spin-axis) is the spin-
resolved conductance at a given energy (which we omit for
simplicity) measured relative to the Fermi energy. The three
components of the vector P can then be obtained by rotating the
quantization axis and applying eq 1.

As a position-independent quantity which in the scattering
formalism can be computed, at least formally, from the
electronic wave functions of the electrodes and the Hamiltonian
of the system, Gs′,s may in principle be subject to restrictions
induced by the spatial symmetries of the whole system. These
relations are obtained by recalling the invariance of the
corresponding space integrals under the orthogonal coordinate
transformations which form the point group of the system
(electrodes plus, possibly, molecule) and employing the
(projective) representations according to which the spinor
wave functions in the electrodes transform. The complete
derivation can be found in Methods, from which it follows that
only symmetries which do not permute the electrodes can
potentially impose a restriction (5) on the original conductance
at each energy. In contrast, symmetries which do permute the
electrodes may only yield a relation 6 between the original
conductance and that corresponding to the hypothetical
situation where bias polarity is reversed. The latter assertion
also applies to anti-unitary symmetries, i.e., time-reversal and
potentially particle-hole, which can be freely applied within the
scalar products up to complex conjugation.

Specifically, from eq 5 it follows that mathematical equations
relating certain spin-resolved conductance terms Gs′,s arise if the
junction presents the following spatial symmetries:

• A 2π/n rotation Cn which does not permute the
electrodes. For a spin-quantization axis directed along
rotation axis, the condition on the conductance is trivial;
however, for n = 2 and any quantization axis perpendicular
to the rotation axis, G Gs s s s, ,= , where s ̅ corresponds to
the opposite spin-state of s. Hence, by eq 1, the
components of the spin-polarization which are normal
to the rotation axis vanish. In our collinear two-terminal
configuration, this rotation axis must coincide with the
longitudinal direction (along which transport takes place)
and we denote the operation by Cn,l.

• A mirror plane σ which does not permute the electrodes.
Since the spinors transform as pseudovectors, in our
formalism this operation is essentially equivalent (except
for the invariance of the electrodes) to a π−rotation about
the axis which is perpendicular to the mirror plane and
contains the fixed point of . By the previous case, the
components of the spin-polarization P which are parallel
to the mirror plane must vanish. In our configuration, this
plane must contain the longitudinal direction, and we
denote the operation by σl (note, however, that there will

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.2c11410
ACS Nano 2023, 17, 6452−6465

6453

www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.2c11410?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


in general be more than one longitudinal plane of
symmetry). We refer to any direction perpendicular to the
longitudinal one as transversal, in particular the direction
in which P points (unless it is the zero vector) in this case.

Consequently, we denote the operations that do not (do)
permute the electrodes as longitudinal (transversal, respectively).
An illustration can be found in Figure 1d. A careful analysis (see
the Supporting Information for details) reveals one further
restriction on the polarization which is not associated with
identities between the different conductance terms: any
longitudinal rotation symmetry Cn,l (n ≥ 2), not only C2,l,
guarantees the vanishing of all the transversal components of the
spin-polarization. Only rotations with n = 2, 3, 4, 6 are, however,
allowed in electrodes which possess a three-dimensional
crystalline structure in the bulk. In contrast, chain-like electrodes
may present other Cn,l symmetries, with one-atom chains
presenting any of them.

We thus conclude that there can be no spin-polarization in
two-terminal systems whose point group is one of the
following: Cnv, Dnh, Dnd, ∀ n ≥ 2 (where the principal rotation
axis is oriented along the longitudinal direction), due to the
simultaneous presence of Cn,l and σl, which forces all the vector
components of the spin-polarization to vanish. Note that the
polyhedral groups are not compatible with a two-terminal
configuration, hence are automatically excluded. Several

examples are shown in Figure 1 and discussed in the next
section. The remaining groups which may admit a finite
polarization vector, Ci, C2n,h, S4n−2, ∀ n ≥ 1, contain inversion
symmetry, the geometrical breaking of which is thus not a
necessary condition to observe spin-polarization in the trans-
mitted current.

The results for all symmetry operations that are compatible
with the two-terminal configuration are summarized in Table 1,
where the identities between spin-resolved conductance terms
for which the polarity is reversed (induced by anti-unitary and
electrodes-permuting unitary symmetries) have also been
included. As can be observed, time-reversal symmetry Θ forces
the oddness (eq 10) of the polarization (eq 1) in combination
with particle-hole symmetry (in the exceptional cases in which
the latter holds46,47) with respect to the zero of energy that the
latter defines. And, perhaps more importantly, time-reversal
symmetry guarantees the vanishing of the whole polarization
vector, at all energies at which the final electrode has only one
mode15 (see Methods). There are no further restrictions on the
spin-polarization induced by anti-unitary symmetries, including
the ones of the form Θg with g a unitary symmetry, as can be
concluded from column 3.2 in Table 1.

Nanocontacts are the simplest possible systems in which the
previous discussion on spin-polarization can be applied. As
shown in Figure 1, these typically consists of two crystalline
fragments or electrodes, source and drain, in contact and placed

Figure 1. Representative examples of metallic nanocontacts. (a) FCC(001) nanocontacts (e.g., Au) with 0, 45, and 15° electrode relative
rotations. (b) FCC(111) nanocontacts (e.g., Au) with 0, 60, and 30° relative rotations. (c) BCC(−110) nanocontacts (e.g., W) with 0, 90, and
30° relative rotations. Rotation angles of the drain electrode (with respect to the source one, ordering indicated by the current direction j) vary
across columns, and the orientation of the electrodes with respect to the spin-quantization axis, indicated by s and with fixed direction here,
varies across rows. The point groups of the corresponding systems are indicated above each column. Relevant symmetry operations
(including a set of generators of the corresponding groups) are explicitly indicated, and those that force the vanishing of the spin-polarization
component along s are indicated in the boxes below each figure, following the notation of Table 1. For the polarization in transversal directions,
σl is the longitudinal symmetry plane which is parallel to the page. Red boxes with no symmetry operations indicate a finite polarization
component instead. (d) Detailed three-dimensional view of the symmetry planes and axes with the group D h2= , as in the first column of (c).
Operations depicted in blue (red) are longitudinal (transversal, respectively); i.e., they do not (do, respectively) permute the electrodes.
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so that their principal symmetry axes are coincident (in that
regard, the relations in Table 1 would hold for an arbitrary
arrangement of the two electrodes, but then all rotation
symmetries would necessarily permute them). We consider
three different pairs of identical electrodes, all of them
presenting a crystallographic cubic system in the bulk, and
with the main symmetry axis coincident with a ⟨001⟩ (four-fold
axis), ⟨111⟩ (three-fold axis), and ⟨−110⟩ (two-fold axis)
direction of the cubic structure. These are respectively shown in
Figure 1a−c. Metallic, nonmagnetic structures of such types can
experimentally be made of Au (FCC), Pb (FCC), or W (BCC),
among other elements, including the perfect crystallographic
atomic arrangement.48

Once the point group of the structure is known, one can
immediately foresee whether spin-polarization of the trans-
mitted current is possible. According to our previous discussion,
the resulting current in systems with groups Cnv, Dnh, Dnd (n ≥ 2)
must be spin-unpolarized. As can be observed in Figure 1, a
simple way of reducing the otherwise high symmetry of a system
(for aligned electrodes) is to rotate one electrode while keeping
the other fixed. This action preserves all longitudinal rotation
symmetries, but in general removes the longitudinal mirror
planes (except if the rotation is by an integer multiple of the
dihedral angle π/n, with n corresponding to one of the
previously mentioned groups), thereby reducing to a
subgroup (up to isomorphism, as between D3d and D3h in
Figure 1b) and allowing for a finite polarization at least in the
longitudinal direction. Of course, it is not necessary to identify
the whole point group of the system in order to rule out spin-
polarization; it suffices to look for rotational and mirror
symmetries that do not permute the electrodes.

In complete analogy with the relative rotation of the
electrodes, the placement of a molecule (or, in general, a piece
of material) between the contacts either leaves invariant or
turns it into one of its subgroups, since it obviously cannot add
any symmetry that was not already present in the standalone pair

of electrodes. As a result, the qualitative effect of adding the
molecule to the system is a potential lifting of symmetry-induced
restrictions on the spin-resolved conductance and spin-polar-
ization. In particular it may allow for an otherwise forbidden
finite polarization, but it cannot (strictly) cancel it if the bare
electrodes already exhibited a nonvanishing polarization.

The spin-resolved conductance, and hence the spin-polar-
ization, can be related with those of an alternative system
obtained by application of an orthogonal transformation. If such
an operation is a symmetry of the system, then the previous
analysis applies and one may find restrictions for these
quantities. If, however, the transformation does not leave the
system invariant, then by a similar procedure one may relate the
conductance terms and polarization of the two systems by eq 11.
In particular, the spin-polarization of the transmitted current
across a chiral molecule and across its enantiomeric partner may
differ only in sign (eq 12), as long as the connection of the
enantiomer molecule with the electrodes is done in such a way
that the mirror plane which relates bothmolecules is separately a
symmetry of the two electrodes. This topic is elaborated further
in the Enantiomeric Partners and Polarization Reversal section.
DFT-Based Quantum Transport Calculations. The

predictions in Figure 1 can be verified by means of SOC-
corrected DFT quantum transport calculations as implemented
in our code Atomistic NanoTransport (ANT.Gaussian).49−51

See the Supporting Information for further details. Specifically,
we show in Figure 2 that a (longitudinal) mirror symmetry
breaking is sufficient to produce a rather large spin-polarization
in strong-SOC metal nanocontacts, with Au, Pb and W as our
representative elements. To this end we rotate the drain
electrode of the nanocontact by an angle θ in increments of 15°
and compute the polarization along the longitudinal direction
according to eq 1. The energy is fixed at the value in the (−3, 3)
eV range that maximizes the maximum absolute value of
polarization across the selected angles. This maximum occurs at
different energy values for the different elements and

Table 1. Conditions Imposed on the Spin-ResolvedConductance Terms (Equation 2) and the Resulting Spin-Polarization Vector
P by the Spatial Symmetries of theWhole System (Electrodes with Possibly aMolecule between Them) onTheir Own, AsWell As
in Combination with Time Reversal Symmetry Θ. Anti-Unitary Symmetries have been Included in the Last Two Rows.a

Gs′,s
AB identity

symmetry (g ) spin-quantization axis g Θg P restriction

longitudinal mirror (σl) longitudinal (l) Gs′̅,s ̅
AB Gs,s′

BA Pl = 0
transversal, parallel to σl (t∥) Gs′̅,s ̅

AB Gs,s′
BA Pt d∥

= 0

transversal, normal to σl (t⊥)
longitudinal π rotation (C2,l) longitudinal (l)

transversal (t) Gs′̅,s ̅
AB Gs,s′

BA Pt = 0
longitudinal 2π/n rotation (Cn,l), n ≥ 3 longitudinal (l)

transversal (t) Pt = 0
Transversal mirror (σt) longitudinal (l) Gs′,s

BA Gs,̅s′̅
AB

transversal (t) Gs′̅,s ̅
BA Gs,s′

AB

transversal π rotation (C2,t) longitudinal (l) Gs′̅,s ̅
BA Gs,s′

AB

transversal, parallel to C2,t (t∥) Gs′,s
BA Gs,̅s′̅

AB

transversal, normal to C2,t (t⊥) Gs′̅,s ̅
BA Gs,s′

AB

inversion (Is) any Gs′,s
BA Gs,̅s′̅

AB

time-reversal (Θ) any Gs,̅s′̅
BA P = 0 if 1 B channel

particle-hole ( ) any Gs,s′
BA(−E) Gs′̅,s ̅

AB(−E) P(E) = −P(−E)
aColumns: 1, Element of the point group g of the system. 2, Direction of spin-projection, which defines the polarization component (eq 1). 3,
Conductance term to which Gs′,s

AB must be equal, due to the presence of either 3.1, the symmetry g alone (eq 5), (eq 6), or 3.2, the symmetry Θg,
where time-reversal Θ has also been applied (eq 7 and eq 8). s ̅ corresponds to the opposite spin-state of s, and GBA to the conductance from
electrode B to electrode A. 4, Restriction imposed on the corresponding vector components of the spin-polarization; these always come from the
operation g alone, Column 3.1. Entries in blank are either tautological or inconclusive (yield no compact identities).
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configurations, depending on the orbital nature of the
conductance channels (in particular for Au, the maximum
occurs below the Fermi energy, where the contribution of the d
orbitals becomes significant). The maximum θ corresponds to
the symmetry operation Cn l, (θ = 2π/n), with n = 4 in
Figure 2a,c,e, n = 3 in 2b,f and n = 2 in 2d. The Cn,l symmetry
guarantees that the displayed curves are 2π/n periodic.

The point group at each rotation angle can be inferred
directly from Figure 1. At θ = π/n, that is, the dihedral angle of
the corresponding at θ = 0, the system recovers the
longitudinal mirror planes and so the polarization is again
vanishing. Importantly, for any two angles θ = π/n ± α (or more
generally, θ = mπ/n ± α, m ) the corresponding systems
are related by a longitudinal mirror plane, that is, each
arrangement of electrodes transforms into the other by
application of a reflection σl to the whole system. In this case,
for α not an integer multiple of π/n the systems are chiral, one
being the enantiomorph of the other. This is a simplified case of
the situations with achiral and chiral molecules which are treated
below, see Figures 3 and 4, but the results (eq 12) are the same:
any two systems that can be obtained f rom one another by a
ref lection across a plane that does not permute the electrodes present
opposite spin-polarization in the direction of propagation. In fact,

the assertion is true for any direction contained in the plane. This
phenomenon can be thought of as a generalization of the CISS
effect (in regards to spin-polarization), in the sense that the spin-
polarization along the direction of transport vanishes if the
system presents such a plane of symmetry, which is forbidden by
chirality. In the context of Figure 2, the polarization−angle
curves are hence π/n antiperiodic when for some θ there is at
least one longitudinal mirror plane in .

From Figure 2, it follows that Au exhibits the greatest spin-
polarization among the chosen materials, albeit the values with
W and Pb nanocontacts are also significant. For all three metals,
the four-fold nanocontacts noticeably exhibit the largest
polarization (across all rotation angles), as compared to the
three-fold ones.

Therefore, standalone metal nanocontacts with strong SOC
can exhibit significant spin-polarization along the direction of
transport due to the symmetry reduction induced by a simple
continuous transformation: a rotation of one electrode with
respect to the other. This result is reminiscent of the Rashba-
Edelstein effect, e.g., as reported in graphene7,46 and other 2D
crystals.6

Achiral molecules, such as benzene or polycyclic aromatic
hydrocarbons (in our case a three-ring polybenzenoid, or

Figure 2. DFT-computed zero-bias spin-polarization (eq 1) along the direction of transport as a function of the angle of relative rotation
between the electrodes (only the top half is rotated), at the fixed energy that maximizes the maximum absolute value of spin-polarization across
both energies and angles. The oddness of the polarization with respect to the dihedral angles fits nicely into the CISS phenomenology, each pair
of systems with opposite polarization being related by a longitudinal mirror plane. (a) Au(001), point group D h4= at θ = 0. (b) Au(111),D3d

at θ = 0. (c) W(001), D4h at θ = 0. (d) W(−110), D2h at θ = 0. (e) Pb(001), D4h at θ = 0. (f) Pb(111), D3d at θ = 0.
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“triangulene”, with a 3−fold rotation axis), can still give rise to
significant spin-polarization when the entire molecular junction,
electrodes plus molecule, breaks longitudinal spatial symmetries.
This is demonstrated for particularly interesting configurations
in Figure 3 via DFT quantum transport calculations, in analogy
with Figure 2 but as a function of energy and for several rotation
angles of the molecule (keeping both electrodes fixed). Unlike
previous studies,34 here SOC is only considered in the metallic
electrodes and ignored in the molecules, which emphasizes that
the qualitative role of the molecule is purely geometrical.

The introduction of a molecule between the electrodes
potentially removes longitudinal rotation andmirror symmetries
from the point group of the system, the latter depending on
the rotation angle of the molecule with respect to the electrodes.
The presence of these symmetries forces the spin-polarization to
vanish along the corresponding axes (see Table 1) in the systems
of standalone electrodes (see Figures 1 and 2). Hence the
qualitative effect of the addition of the molecule in the
polarization−energy curves is similar to that of the relative
rotation of electrodes, further allowing to break longitudinal
rotation symmetries. The quantitative effect, however, is in
general completely different. Specific finite values of spin-
polarization can vary greatly depending on the molecular energy
levels and their orbital character. This can be seen in Figure 3c
where a finite polarization appears at the Fermi energy despite of

the use of Au electrodes. The presence of molecular states at the
Fermi energy is due to the zero-gap degenerate nature of the
triangulene spectrum, since open-shell calculations have not
been considered here for simplicity.52

The importance of the exact position of the molecule on the
spin-polarization is apparent from all cases in Figure 3. For the
discrete set of rotation angles that make the longitudinal
(regarding the connection to the contacts) symmetry planes of
the achiral molecule coincident with the longitudinal symmetry
planes of both electrodes, contains some σl and so the
longitudinal spin-polarization is vanishing at all energies, see the
blue curve in each subfigure. For any other rotation angle of the
molecule, the separately achiral components constitute a chiral
system. The longitudinal polarization at any energy is thus
reversed between any pair of angles mπ/lcm(nel, nmol) ± α, with
m , with lcm denoting the least common multiple of two
integers, and nel, nmol ≥ 1 the number of longitudinal planes of
the electrodes and molecule, respectively. This is because the
resulting systems are enantiomorph pairs, in analogy with the
bare nanocontacts configurations in Figure 2. In particular,
lcm(nel, nmol) = lcm(4, 2) = 4 in Figure 3a,b, lcm(3, 2) = 6 in
Figure 3c, and lcm(3, 3) = 3 in Figure 3d. More compactly, the
longitudinal polarization at any energy will be π/lcm(nel, nmol)
antiperiodic in the rotation of themolecule alone, since the latter
is achiral (assuming that the bare pair of electrodes presents any

Figure 3. DFT-computed zero-bias spin-polarization (eq 1) along the longitudinal and a transversal direction (the latter shown in the inset
panels), as a function of energy and for different arrangements involving achiral molecules. In all cases the direction of propagation and the
polarization component are respectively indicated by j and s (inset panels thus corresponding to transversal polarization of the original
structures of which orthographic and perspective views are also shown). The angles correspond to rotations of the molecule alone, along the
longitudinal direction. SOC is considered only on the metallic electrodes. (a) Au(001) electrodes with a parallel benzene (main rotation axis
perpendicular to the current direction). (b) SourceW(001) and drain Au(001) electrodes with a parallel benzene. (c) Au(111) electrodes with a
parallel triangulene. (d) Au(111) electrodes with a triangulene perpendicular to the current direction. The corresponding point groups of the
junctions are indicated in the figures along with the general crystallographic directions of each electrode fragment in the inset structures. In (a),
(b), and (d), the vanishing of the transversal polarization for all energies at the angles with lower symmetry is respectively induced by C2,l, C2,l,
and C3,l symmetries. Note that the longitudinal polarization in (a) is nonvanishing even in the presence of inversion symmetry Is ∈ C2h (the
benzene molecules themselves are also centrosymmetric).
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longitudinal mirror symmetry and that it extends to the whole
junction for some connection of the molecule); hence the
corresponding function is 2π/lcm(nel, nmol) periodic.

The insets in Figure 3a,b,d demonstrate the vanishing of the
transversal polarization at all energies due to C2,l, C2,l, and C3,l
symmetries (at least for the angles that yield the smaller point
groups, as specified in the caption, which lack longitudinal
mirror planes), respectively. The numerical values obtained in
these cases were below the computational error threshold.

As stated above, inversion symmetry is compatible with a
finite spin-polarization in the two-terminal device. This is
numerically exemplified in Figure 3a for the angles at which

C h2= , a group that allows for a non-null longitudinal
polarization. The point groups containing inversion symmetry
that do not force a vanishing polarization, listed in the Symmetry
Considerations section, are somewhat elusive with standard
electrode choices unless an appropriate symmetry-breaking
molecule (removing all transverse rotation symmetries or the

transverse mirror plane while keeping inversion symmetry), is
introduced into the system. This may disguise the fact that
inversion symmetry (or the geometrical breaking thereof) is
qualitatively irrelevant for spin-polarized transport.

These general rules are consistent with the results of Guo et
al.;47 see Supporting Information for further details.

It is worth noting that the vanishing of the spin-polarization in
Figure 3a above approximately −2.5 eV is due to the exclusive s-
orbital character of the bulk Au(001) bands in that energy range;
see the Supporting Information. Being proportional to the L·S
operator, SOC is therefore not present in the system at these
energies and so the current must be spin-unpolarized; see
Methods. In contrast, the W(001) electrode in Figure 3b does
not share this peculiarity, hence enabling spin-polarization in the
previous energy range. Nevertheless, depending on where the
energy levels of the molecule lie relative to the Fermi level of the
junction, it may be possible to observe spin-polarized current at
accessible energies (bias voltages) in experimental molecular

Figure 4. DFT-computed zero-bias spin-polarization (eq 1) along the longitudinal and transversal directions, as a function of energy and for
different arrangements involving chiral molecules, in particular, two types of carbon helices (see the main text). In all cases, z and s indicate the
corresponding polarization component. The angles correspond to rotations of the molecule alone, along the longitudinal direction. SOC is
considered only on the metallic electrodes, which are Au(001) in all cases. (a) Asymmetric carbon helix; longitudinal polarization. (b) Its
enantiomeric partner connected such that the system is the specular reflection of (a) through a (centered) longitudinal plane; longitudinal
polarization. (c) Analogous to (b) but with the connection of the enantiomer realized through a reflection on the (centered) transversal plane;
longitudinal polarization. (d−f) Analogous to (a−c), respectively but for transversal polarization (spins point into the page as the perspective in
the insets suggests). Point group of the junctions in (a−f): C1= (trivial). (g) Symmetric carbon helix with the transversal rotation C2,x.
Original (blue) and enantiomeric partner (red) connected such that the system is the specular reflection of the original one through the
transversal plane; longitudinal polarization. (h) Analogous to (g) but for transversal polarization in a direction perpendicular to the C2
symmetry axis. (i) Analogous to (g) but for transversal polarization in a direction parallel to the C2 symmetry axis. Point group of the junctions
in (g−i): C2= , with transversal orientation. LH and RH refer to left- and right-handed enantiomers, respectively. The longitudinal spin-
polarization is reversed between enantiomeric pairs as long as both systems as a whole (including the nanocontacts) are related by reflection
through a plane that does not permute the electrodes (a,b). This is also true for the transversal polarization component contained in such a
plane (d,e), while the transversal component normal to it remains invariant. If the enantiomeric partner is connected according to a transversal
plane, the polarization is altered unpredictably (c,f) unless the molecule has a two-fold transversal rotation symmetry, in which case both
connections of the enantiomer are identical (g−i).
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junctions even with Au contacts (see Figure 3c). In the case ofW
or Pb electrodes, the chance of always detecting a finite signal at
bias voltages on the order of a few hundred mV is greatly
enhanced.
Enantiomeric Partners and Polarization Reversal. In

the following, we consider left- and right-handed chiral
molecules which make up enantiomeric pairs. Specifically,
these molecules are helices made out of a carbon chain and we
explicitly refer to them as a carbon helix. They have been
employed in previous theoretical studies of the CISS effect,34

and we consider here two variants (see the Supporting
Information) along with their respective enantiomeric partners.
The first one, which we refer to as asymmetric, has no spatial
symmetries and is depicted in Figure 4a−f. The second, which
we refer to as symmetric, presents in contrast a single spatial
symmetry, namely a two-fold transversal rotation symmetry
through its center, and appears in Figure 4g−i. The difference
between them is the removal of two C atoms and the presence of
H atoms (depicted in red) on a single end of the former.

As shown in Figures 3 and 4a,d and proved in eq 13, a
longitudinal rotation of the molecule changes the spin-
polarization along any direction in an unpredictable way, except
for a discrete set of angles determined by the symmetries of the
molecule and electrodes (see eq 11 and the discussion
thereafter). It is then to be expected that a variation in the
anchoring of the enantiomeric partner between the contacts also
has an unpredictable effect on the polarization. By eq 12,
however, the two sets of polarization−energy curves (along a
given direction) obtained from the pair of molecules have a one-
to-one correspondence, given by a reversal of sign at least along
the longitudinal direction according to eq 12. This reversal of the
spin-polarization, which accounts for the CISS effect, occurs
when the enantiomeric partner junction is realized through the
application of a mirror symmetry of both electrodes, turning one
system into another (enant1 in Methods). These two junctions
are shown in Figure 4a,b.

This way of realizing the enantiomeric partner junction (up to
longitudinal rotations), namely, through longitudinal mirror
symmetries of the electrodes, yields, to an extent, a familiar
result. In contrast, if the connection of the enantiomeric partner
is realized through a reflection on the transversal plane (enant2
inMethods), by eq 13 the spin-polarization will in general not be
related to that of the original molecule, even if longitudinal
rotations are considered. This is displayed in Figure 4c,f. Note
that it has been implicitly assumed in these general discussions
that the standalone electrodes present the corresponding planes
of symmetry, for which Figures 1 and 2 may be used as a guide.

Both ways of realizing the enantiomeric partner connection
(up to longitudinal rotations) are qualitatively different due to
the absence of a two-fold transversal rotation of the molecule.
The spin-polarization of the enantiomeric partner junction
obtained through the transversal plane σt will be equal to that
obtained through a longitudinal plane σl if the molecule presents
the aforementioned rotation symmetry and it is placed with the
appropriate longitudinal angle such that the rotation symmetry
is shared by the electrodes, i.e., C t l t2, = . This is
exemplified in Figure 4g−i, where the symmetries are,
respectively, C C C, ,x y z2, 2, 2, (shared by the electrodes
and chiral molecule). The “transversal” enantiomeric partner
(analogous to that in Figure 4c,f and displayed in the red panels)
is identical to that obtained through a reflection on a
longitudinal plane, as it should be since σt = σlC2,t and

C t2, is a symmetry of the system and so is the resulting
polarization. The invariance (reversal) of the polarization of the
enantiomeric partner in Figure 4h,i occurs due to the
geometrical equivalence between inverting the longitudinal
coordinate and the spin-direction z ̂ (the transversal direction
normal to z,̂ respectively); see eq 14.
Experimental Perspective. We have not addressed in the

above how the predicted spin-polarization, as defined in eq 1,
may be actually verified in the laboratory. This would certainly
require the application of a finite bias between the electrodes,
establishing a charge current I which is then accompanied by
preferred spin-orientations, constituting the spin-current

PI .16 In principle, the spin-current could be detected in
two-terminal devices in the equilibrium limit as long as the
unitary scattering formalism does not strictly hold, which in
particular would be ensured in the presence of significant mode-
selective dissipation.41 However, one should also consider that
the polarization of the current may be greatly suppressed not far
from the scattering region if dissipative processes are abundant
in the drain electrode.

Currently, CISS experiments typically involve magneto-
conductance measurements, where finite values have been
reported with two-terminals in the linear regime, exploiting the
spin-valve effect.25 Ferromagnetic components, either metals or
doped semiconductors, are employed for such detections and
the magneto-conductance can be identified with ΔG(M, V) =
G(M, V) − G(−M, V), where M is the total magnetization, V is
the bias voltage (fixing the drain/source nature of the
electrodes), and G is the total conductance. Onsager’s relation
fundamentally forbids a finite equilibrium value ΔG(M, 0),
relying only on the applicability of the unitary scattering
formalism as well as, of course, the perfect reversal of the
magnetization in the two separate conductance measurements
(see Methods). The detection of a finite value could then
indicate the presence of significant inelastic effects. A more
revealing feature, also applicable at finite bias, can be obtained by
application of the symmetry analysis to the magnetic system.
The Hamiltonian of the junction is then no longer time-reversal
invariant and Θ is thus not a symmetry, but more importantly, a
finite magnetization along the longitudinal (a transversal,
respectively) direction will remove all longitudinal mirror
(rotation, respectively) symmetries. This will induce a finite
spin-polarization, if it was not already present, along the
corresponding directions according to Table 1. Note, however,
that its origin is magnetic (it also perfectly changes sign upon
magnetization reversal, as shown below) and should not be
attributed to CISS. In the case of magnetization along the
direction of transport, if the underlying structure disregarding
magnetism presents a longitudinal symmetry plane σl; i.e., Θσl is
a symmetry of the magnetic point group, a straightforward
application of eq 11 with Ŝ(σlr,M) = Ŝ(r, − M) yields Gs′,s(M) =
G s′̅, s(̅−M), hence ΔG = 0. Likewise, in the case ofmagnetization
along any direction perpendicular to transport if ΘCn,l (recall
that Cn,l is a rotation of 2π/n along the transport direction) is a
symmetry, then ΔG = 0 by an analogous argument. Therefore,
the geometrical selection rules for the spin-polarization are the
same as for the magneto-conductance, establishing the analogy
between the vector components of P and M. Note that the
relevant set of symmetries is that of the purely spatial or unitary
ones, not the magnetic point group introduced by the
ferromagnet.

It may be worth noting that, in practice, the symmetry of the
systemmay be reduced by defects, often in an uncontrolled way.
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As is customary in solid-state physics, group-theoretical results
may then be understood as a limiting case. In particular, the spin-
polarization would be expected to be small, but not strictly
vanishing, if the deviation from the suitable, perfectly sym-
metrical configuration was also small, i.e., the symmetry of the
system is preserved on a course scale. The relevant defects,
however, would be those close to the tips of the electrodes, in the
scattering region (on which our analysis is based). Furthermore,
the detection of a vanishingly small spin-polarization along a
given direction may allow determining the presence of certain
symmetries according to Table 1. Another important topic in
connection with practical applications and experiments,
especially at room temperature, is the presence of molecular
vibrations and their coupling to the electronic spin.45,53 In
principle, we would not expect qualitative changes to our steady-
state results in the limit in which the unitary scattering formalism
is still applicable and one should stick to it, since the group is
unchanged for the perturbed Hamiltonian around the
equilibrium positions (see, for example, eq 2 in ref 54); although
a further study would be convenient in this regard. It is worth
noting that temperature-induced atomic vibrations will most
likely not have an appreciable effect in systems with bare
contacts of heavy atoms, while they will generally enhance the
effect of SOC in the molecule (here disregarded compared to
that of the leads), constituting in principle an important
correction to numerical results for the latter systems at room
temperature. In any case, we have shown that the reduction of
symmetry will, if anything, favor the emergence of a finite spin-
polarization and magneto-conductance.

Regarding the possible reversal of the spin-polarization upon
substitution of a chiral molecule with its enantiomeric partner, it
should be noted that even though the relative longitudinal
rotation angle between the molecule and its enantiomeric
partner may not be controllable in practice (so that the
polarization reversal could not be ensured), still the averaged
spin-polarizations over multiple different connections (with
varying relative rotational angles) of the two enantiomers will
tend to be the opposite of each other. Furthermore, while for the
longitudinal direction the average spin-polarization will in
general be a finite value, for any transversal direction the average
will tend to zero since the polarization at any given energy is π−
antiperiodic due to eq 12. This is illustrated in Figure 4d,e.
Meanwhile for achiral molecules, if the junction presents a
longitudinal mirror symmetry for any relative rotation angle,
then the angle-average longitudinal spin-polarization will always
tend to zero.

At a quantitative level, our DFT results show that, as expected,
Au nanocontacts do not exhibit finite spin-polarization near the
Fermi level (due to predominant s-orbitals) and, by extension,
will not show a measurable magneto-conductance at small bias
voltages, unless an organic molecule with frontier p-orbitals near
the Fermi level is included in the junction. This is most likely the
case in the recent experimental study by Liu et al.,25 where a
measurable magneto-conductance at a bias voltage as low as 100
mV is reported for a two-terminal molecular junction with Au as
one of the electrodes. In general, however, we note that FCC Pb
and BCC W electrodes exhibit non-negligible spin-polarization
near the Fermi level and thus, are more likely to show
experimental traces of magneto-conductance at low bias
voltages. In any case, even if the presence of a molecule is not
needed to generate a finite spin-polarization, they can still be
crucial to achieve the rather large values that have been
measured.24,55

As a final remark, we note that the phenomenon displayed in
Figures 2 and 3, namely, the emergence of a finite spin-
polarization along the transport direction upon rotation of a
single component of the junction, indicates a potential
mechanism to mechanically switch between polarized and
unpolarized currents within the same device, something that
cannot be accomplished with permanent ferromagnetic
elements.

CONCLUSIONS
The lack of certain symmetry planes is the distinctive feature of
chiral molecules regarding their potential to induce spin-
polarized transport inmolecular junctions. This is so irrespective
of the specific shape of the molecule (whether they are helix-like
or not) or the specific dominant electronic orbitals in the
junction (as long as they are not all isotropic), which may
nevertheless play an important quantitative role. Here we have
extended the concept of chirality in the CISS effect to the
junction as a whole (or extended molecule) and provide the
following generalization: any two systems obtained from one
another by the reflection through a plane that does not permute
the electrodes will present opposite spin-polarizations along the
direction of transport. In particular, systems that are left
invariant under such a reflection cannot induce a finite
polarization along that direction, in agreement with the
traditional CISS concept. The inevitable breaking of these
symmetry planes in junctions with chiral molecules provides a
sufficient condition to obtain a finite spin-polarization, which is
enhanced if the electrodes present a strong SOC.

This therefore extends the class of molecules that can be
considered for the CISS effect to not only include chiral
molecules which have been widely considered in the literature
up to now, but to any molecule�and even nanocontacts
without any intermediate molecule�which meet the afore-
mentioned symmetry criteria. In particular, a simple rotation of
any component of the junction, molecule (if present), drain, or
source electrode will generally induce spin-polarization along
the direction of transport due to the breaking of the mirror
symmetry planes that do not permute the electrodes.

We finally note that the results presented here are strictly valid
within the unitary scattering formalism, in particular at
equilibrium. Nevertheless, we postulate that a vanishing spin-
polarization in equilibrium remains so when applying a finite
bias (and by extension also the magneto-conductance, as long as
it does not vanish exclusively due toOnsager’s reciprocity), since
the longitudinal symmetries are still present in the Hamiltonian.
The arguments, however, have to be adapted to the Green’s
function formalism to account for nonequilibrium conditions,
and will be presented in a subsequent work.

METHODS
Electronic transport in a system with two leads can be formulated as a
scattering problem between Bloch states of the isolated electro-
des.15,56−59 At a given energy E, let αi, αi′ (i = 1, ..., MA) be the incoming
and outgoing (with respect to the scattering region) modes of electrode
A, and βj, βj′ (j = 1, ..., MB) the outgoing and incoming modes of
electrode B. These modes label the eigenstates ψα, ψβ, which are in
general spinors, of the corresponding isolated electrode which obey the
flux (or energy) normalization.58 The spin-resolved conductance
between the leads A (initial) and B (final) can then be defined in terms
of the scattering matrix elements as
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where s, s′ ∈ {↑,↓} respectively label the initial and final spin-states, or
spinor components, referred to a given direction of quantization and Ŝ is
the unitary scattering operator.60,61 The energy and electrodes labels
will be dropped for simplicity, except when mandatory. Ŝ depends on
the spatial coordinates r exclusively via theHamiltonian of the complete
system, which includes the scattering region formed by the contacts (or
part of the leads which is sufficiently close to the scattering region) plus,
possibly, a molecule or piece of material between them. For an incident
unpolarized current, the component of the spin-polarization (of the
outgoing current) along an arbitrary spin-quantization axis reads,16 up
to a normalization factor:

P G G G G= +

where the ↑, ↓ spin-states are again referred to the spin-quantization
axis. The whole polarization vector Pmay then be evaluated by rotating
the spin-axis and applying (1), which is the method here employed in
numerical calculations withANT.Gaussian. Analogously, for a fixed
quantization axis along z ̂ one may compute the perpendicular
components as16
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with x ̂, ŷ the directions along which the Pauli vector has components σx,
σy (in the usual representation), respectively.

In the case of no spin-dependent terms (originating from SOC or
noncollinear magnetism), anywhere in the contacts or molecules, then
it must be S↑↑

βjαi = S↓↓
βjαi, S↑↓

βjαi = S↓↑
βjαi = 0, so that all the polarization

components are vanishing. In our case, the metallic contacts present
strong SOC and we ignore it in the molecules, as in practice it is
negligibly small in light elements.

Before proceeding, it may be worth remarking the assumptions of the
present analysis. First, we assume the existence of a single longitudinal
direction which acts as a symmetry axis for both electrodes separately,
and along which electronic propagation takes place. Most of the results
belowwould still hold for an arbitrary arrangement of the electrode pair,
particularly eqs 2−8 and 11, but care should be taken when cataloging
the possible symmetries of the system and their orientation with respect
to the scattering states. We have also implicitly assumed that both
electrodes present time-reversal or inversion symmetry, so that at any
energy in each electrode the number of incoming modes coincides with
the number of outgoing modes (for crystalline electrodes, this is due to
the evenness of the energy spectrum in the Brillouin zone).
Nevertheless, only the analysis of the anti-unitary symmetries requires
that condition; the rest would be analogous. More generally, there is a
one-to-one correspondence between the incoming (outgoing)
eigenstates of a ferromagnetic electrode and the outgoing (incoming,
respectively) eigenstates of the electrode with opposite magnetization,
given by the time-reversal operation. Finally, we note that we are here
dealing with steady-state conditions, as is usual in CISS studies. While
one could also perform time-dependent DFT calculations,62 as long as
the potential preserves the original symmetry during the evolution and
the density matrix is consistent with it, our analysis would in principle
remain valid for both formalisms.
Spatial (Unitary) Symmetries. Let ⊂ O(3) be the point group

of the complete system. Then Ŝ(g−1r) = Ŝ(r) for any spatial symmetry
operation g , and owing to the invariance of the integral under this
coordinate transformation:63
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where g̅ denotes the action of the coordinate transformation g on the
spinor functions which does not affect its (spin) components, and 1/2

is the (projective) representation of O(3) of angular momentum 1/2,
given by
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for a θ rotation along direction e,̂ where σ is the Pauli vector and the
parity under inversion Is has been dropped from the notation since it
does not affect eq 2 or eq 1. This representation carries the
transformation of the spinor components under an operation g ,
and the particular formwe have given is valid under the assumption that
the spin is projected along z;̂ otherwise an orientation-preserving
change of coordinates is needed to determine e.̂

At this point, we must distinguish two cases among the symmetry
operations g . Let A ( B) be the point group of the isolated
electrode A (B, respectively) with the same fixed point as :

• g is a symmetry for each electrode in isolation, that is,
g A B. Then g cannot affect the longitudinal coordinate
and thus g̅ does not alter the incoming/outgoing nature of the
modes, nor their energy. Therefore, g g( )k k i,

i i k=
where i is the representation of A according to which ψαi

transforms, and an analogous result follows for electrode B.
Inserting this in eq 3, it is straightforward to prove (invoking the
unitarity of such representations) that Gs′,s

AB(E) is actually
independent of all ,i j regardless of their dimensions,
hence in this case:
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1 1

1 1 1 1
= * | |

= =

(5)

• g is not a symmetry for each electrode in isolation, that is,
g A B. Then g, if it exists, necessarily permutes the
electrodes, which must thus have identical composition. In this
case the longitudinal coordinate is inverted, hence the existence
of such a symmetry establishes a one-to-one correspondence (g̅)
between the incoming modes {αi} ↔ {βj′} and also between the
outgoing modes {βj} ↔ {αj′} (i, j = 1, ..., MA = MB = M),
including the group velocities in the flux normalization, which
must then coincide for both modes in the pair; so that

G E
e
h

g g S

g

( ) ( ) ( ) ,

( )

s s
AB

i j

M

s s
s s s s s s

A B

,

2

, 1 ,

1/2
,

1/2
,

2

i j

1 1

1 1 1 1
= * | |

\

=

(6)

Therefore, we may treat symmetry operations individually irrespective
of the groups A, B they belong to. From eqs 5 and 6, it follows that
there will be a relation between the spin-elements of GAB or between
those of GAB, GBA (respectively) whenever g( )1/2 has exactly two out
of four non-null entries, which occurs for rotations along the spin-
quantization direction (b = 0 in eq 4) and for π rotations perpendicular
to it (a = 0 in eq 4), or equivalently for reflections through planes
perpendicular to these axes.
Anti-unitary Symmetries. For nonmagnetic systems the group of

symmetries is a gray point group, which is constructed from the
previous by allowing for the time-reversal operation Θ = σyK, where
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σy acts on the spinor components only and K denotes complex
conjugation. Noting that Θ is an anti-unitary operation, that ΘSΘ̂−1 =
Ŝ† (in analogy with the time evolution operator) if time-reversal is
indeed a symmetry of the Hamiltonian (σyH*σy = H, in the time-
independent case) and that K inverts the propagation direction of the
modes within each electrode (thus making a correspondence {αi} ↔
{αi′} and {βj} ↔ {βj′}):

G E e
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e
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(7)
where s,̅ s′̅ denote the opposite spin-states of s, s′, respectively; and we
have introduced the conductance GBA from electrode B to A:

G E e
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S( )s s
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i

M

j
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2

1 1

2
A B

i j= | | | |
= =

Combining eqs 6 and 7, we obtain the action of the symmetries gΘ and
Θg on the conductance for any spatial operation g that permutes the
electrodes. The result in both cases is
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= * | |

\

=

(8)

which readily allows us to obtain the restrictions imposed on GAB by
these operations.

Another consequence of time-reversal symmetry, pointed out by
Zhai and Xu15 and later expanded upon by Utsumi et al.,59 is the fact
that all spin-polarization components vanish at any energy at which the
final electrode has only one mode, i.e., MB = 1 in our notation. The
proof is as follows. Setting MB = 1, by the unitarity of the S matrix:

S S S S S S
i

M

s
s s s s s s s s s s

1
, , , ,

A
i i

1 2 1 2 1 2 1 2
+ + =

=

* * *

and the condition imposed by time-reversal symmetry (note that in this
case Θψs

β = i(δs,↓ − δs,↑)ψs ̅
β′):

S S S S S S(2 1) , 0s s s s s s, , ,1 2 1 2 2 1
= = = =

setting s1 = s2 = s′, one obtains Gs′,↑ + Gs′,↓ = G s′̅,↑ + G s′̅,↓, which implies
that P = 0 in eq 1 for every spin-quantization axis, hence P = 0 at the
corresponding energy.

An extension of the previous procedure allows to prove Onsager’s
relation, which states that G(M) = G(−M), M being the total
magnetization of the junction and G = G↑↑ + G↑↓ + G↓↑ + G↓↓ the total
conductance. Although we do not treat magnetic junctions numerically
in the present work, it may be worthwhile to explicitly derive this result
both for its practical importance (in magneto-conductance experi-
ments) and to illustrate how this analysis can be readily generalized to
account for magnetic elements. For an arbitrary MB, employing the
unitarity of the S matrix and taking the sum over the MB β modes, one
obtains:
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=
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where we have allowed for a possibly different number of outgoing
(MB) and incoming (MB′) modes in the B electrode (same for A also)
due to the potential absence of both inversion and time-reversal
symmetry. Application of the time-reversal operation (not symmetry)
now yields the more general relation Ssd1,sd2

βjβ′j′(M) = (2δsd1,s d2
− 1)Ss ̅d2, s ̅d1

βj′β′j(−M),

since ΘŜ(M)Θ−1 = Ŝ(−M)† (inherited from ΘĤ(M)Θ−1 = Ĥ(−M)).
Combining these two expressions, one concludes that G(M) = G(−M).
Furthermore, in the presence of a single outgoing channel, P(M) =
−P(−M); but not otherwise because the vanishing of the spin-flipping
terms is necessary. Note that Onsager’s relation holds in equilibrium,
implying the vanishing of the magneto-conductance ΔG(M) = G(M) −
G(−M) also in the presence of SOC.

For completeness we also comment on particle-hole (or charge
conjugation) symmetry , although it is not present in the physical
systems of this work. In our basis, this operator is represented as

IK= , where I is the identity operator acting on the spinor
components only. The condition on the Hamiltonian H H1 =
implies E E( ) ( )i i= , where we have explicitly included the
energy (measured from a Fermi level obtained from the previous
condition on the Hamiltonian) corresponding to each eigenfunction,
and omitted the arbitrary phase factor since it is canceled in our
calculations. Therefore:
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(9)

By eqs 7 and 9, the combination would yield the condition:

P PG E G E E E( ) ( ) ( ) ( )s s
AB

s s
AB

, ,= = (10)

However, particle-hole symmetry will rarely be present in realistic
systems beyond simplified models. A family of materials which may
reasonably exhibit this symmetry are the carbon allotropes.46,47

This exhausts the set of anti-unitary symmetries. Note that for eqs
7−10 to be applicable, the whole system needs to have the
corresponding symmetry. In particular, placing a nonmagnetic
molecule or material between magnetic electrodes (or vice versa)
would break the time reversal symmetry of the system.
Rotated Systems and Enantiomers. Consider now an

orthogonal spatial operation which is not a symmetry of the system;
g . Performing the corresponding change of coordinates in eq 2, we
obtain a new scattering operator Ŝ(r)′ = Ŝ(g−1r) ≠ Ŝ(r) and
eigenfunctions r rg g( ) ( ) ( )1/2 1* = (which have the opposite
incoming/outgoing nature if and only if g inverts the longitudinal
direction) of the transformed system, but the integral is still invariant. In
defining ψ′ = gψ̅, we are keeping the spin-projection along the same,
untransformed direction. Therefore, the spin-polarization of the
transformed system could in principle be related to that of the original
system along any fixed projection direction, since the spin-resolved
conductance satisfy a similar equation to eq 3:

r r r r
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(11)

If the electrodes are fixed and the molecule is rotated around the
longitudinal direction by an operation which is not a symmetry of the
molecule (otherwise eq 5 would apply) or the electrodes (otherwise eq
11 would apply, since it would be equivalent to rotating the whole
system), then the integral in eq 2 is not invariant under this
transformation and the new components (in the rotated system, but
along the original direction) of the spin-polarization are in general
unrelated to the old ones, as can be observed in each subfigure of
Figures 3 and 4. The exception being if the rotation is geometrically
equivalent to a longitudinal reflection, in which case eq 12 applies.

If a chiral molecule is placed between the electrodes, then the system
cannot have planes of symmetry (more precisely and assuming that the
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molecule also lacks inversion symmetry, SO(3)). It follows from
eq 11 that the substitution, while keeping the electrodes fixed, of a chiral
molecule by its enantiomeric partner may in principle yield a spin-
polarization that is related to the original in a deterministic way (that is,
independent of the symmetry-compatible details of the system). For eq
11 to be applicable, it is necessary that the system of electrodes
possesses a symmetry plane, and to connect the molecule in such a way
that the whole system is obtained from the original by reflection
through that mirror plane, as done in Figure 4. Two cases can then be
distinguished, corresponding to the two essentially different ways to
connect the enantiomer (both of them related by a π rotation of the
molecule around an axis perpendicular to the longitudinal direction,
which swaps the anchoring to the electrodes), which we label by enant1,
enant2:

• The system of electrodes has a longitudinal symmetry plane σl,
containing the longitudinal direction. Let t∥, t⊥ be transversal
directions parallel and perpendicular, respectively, to σl. Then
following the discussion of eq 5 and employing eq 11 with g = σl,
we obtain
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where Gs′,s
AB(E)enant1 = e d

2

/h∑i=1
MA∑j=1

MB | 3(σ̅l ψsd1′
β j (r)*)S(σl

−1r)(σ̅l

ψsd1

αi)(r))d3r|2 is the conductance in the system with the present
connection of the enantiomeric partner of the original molecule.

Usually there will be more than one such plane of symmetry for the
system of electrodes, each of them determining a position of the
enantiomer (all of them related by a rotation of the molecule alone
around the longitudinal direction) for which the spin-polarization is
related to that of the original molecule.

• The system of electrodes has a transversal symmetry plane σt,
perpendicular to the longitudinal direction. This plane has a
fixed position in our two-terminal configuration and the
operation permutes the electrodes, so that following the
discussion of eq 8 (in particular, invoking time reversal
symmetry) and employing eq 11 with g = σt, we obtain for the
following spin-projections:
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whereGs′,s
AB(E)enant2 is defined in analogy withGs′,s

AB(E)enant1, only changing
σl by σt. There is thus no conclusive relation between P and Penant2.

There is then one connection of the enantiomer, enant2, that may
yield a spin-polarization which is unrelated, neither equal nor opposite,
to that of the original molecule. This is no longer true if (and only if, in
our configuration) the system of electrodes has both symmetries σl, σt
and the original system, including the chiral molecule, has a transversal
C2,t d∥

rotation symmetry whose axis is parallel to the plane σl, so that σt =
σlC2,td∥

. In this case, successively applying eqs 8 and 12 in the right-hand
side, and eqs 7 and 13 in the left-hand side (σtΘ = σlΘC2,t d∥

), it follows
that
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which effectively makes the polarization equal for the two ways of
connecting the enantiomer. This was to be expected, since both systems
are identical due to the C2,td∥

symmetry.
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