124 research outputs found

    Expression and role of fibroblast activation protein-alpha in microinvasive breast carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diagnosis of ductal carcinoma in situ (DCIS) in breast cancer cases is challenging for pathologist due to a variety of in situ patterns and artefacts, which could be misinterpreted as stromal invasion. Microinvasion is detected by the presence of cytologically malignant cells outside the confines of the basement membrane and myoepithelium. When malignant cells invade the stroma, there is tissue remodeling induced by perturbed stromal-epithelial interactions. Carcinoma-associated fibroblasts (CAFs) are main cells in the microenvironment of the remodeled tumor-host interface. They are characterized by the expression of the specific fibroblast activation protein-alpha (FAP-α), and differ from that of normal fibroblasts exhibiting an immunophenotype of CD34. We hypothesized that staining for FAP-α may be helpful in determining whether DCIS has microinvasion.</p> <p>Methods</p> <p>349 excised breast specimens were immunostained for smooth muscle actin SMA, CD34, FAP-α, and Calponin. Study material was divided into 5 groups: group 1: normal mammary tissues of healthy women after plastic surgery; group 2: usual ductal hyperplasia (UDH); group 3: DCIS without microinvasion on H & E stain; group 4: DCIS with microinvasion on H & E stain (DCIS-MI), and group 5: invasive ductal carcinoma (IDC). A comparative evaluation of the four immunostains was conducted.</p> <p>Results</p> <p>Our results demonstrated that using FAP-α and Calponin adjunctively improved the sensitivity of pathological diagnosis of DCIS-MI by 11.29%, whereas the adjunctive use of FAP-α and Calponin improved the sensitivity of pathological diagnosis of DCIS by 13.6%.</p> <p>Conclusions</p> <p>This study provides the first evidence that immunostaining with FAP-α and Calponin can serve as a novel marker for pathologically diagnosing whether DCIS has microinvasion.</p

    Effect of Water Distribution during Pre-drying on the Microstructure and Texture Properties of Peach Crisps Produced by Hot Air-Vacuum Freeze Drying

    Get PDF
    In this study, experiments were conducted to investigate the effect of moisture distribution during pre-drying on the microstructure and textural quality of hot air-vacuum freeze dried peach slices. The moisture distribution during the hot air pre-drying process at different temperatures (40, 60 and 80 ℃) and the product temperature during heating were monitored. Three levels of dry-basis moisture content (7, 6 and 5 g/g) were selected as moisture conversion points for each temperature. The color, shrinkage rate, microstructure, pore distribution, textural properties and hygroscopicity of peach crisps were measured. The results showed that drying temperature had a great impact on the moisture distribution during the pre-drying process, but the overall trends of moisture mobility were consistent among the different drying temperatures. The lower the moisture content of the pre-dried sample, the closer the color of the final dried sample to that of the fresh sample. The color of the sample dried at 40 ℃ with a moisture conversion point of 5 g/g was the closest to that of the fresh sample. Drying time had a greater effect on the shrinkage rate than temperature. It took longer to dry peach slices to the same moisture conversion point at 40 ℃ than 60 and 80 ℃. The sample shrank distinctly during both pre-drying and combined drying. There was a significant difference in the pore structure between the freeze-dried and combined dried samples. The sample with a moisture conversion point of 5 g/g had the most heterogeneous pore structure. The average hardness value of the hot air-vacuum freeze dried sample increased by 52.11% compared with that of the freeze-dried sample. The lower the moisture content of the pre-dried sample, the higher the hardness value of the hot air-vacuum freeze dried sample. This study showed that hot air pre-drying can effectively control the crunchiness and hardness of peach crisps. The decrease in the hygroscopicity of the hot air-vacuum freeze dried sample compared with the vacuum freeze dried one may be related to the structure changes during the pre-drying process. In summary, hot air-vacuum freeze drying is conducive to improving the texture quality and storage stability of peach crisps than vacuum freeze drying

    Multi-Stage Tuberculosis Subunit Vaccine Candidate LT69 Provides High Protection against Mycobacterium tuberculosis Infection in Mice

    Get PDF
    Effective tuberculosis (TB) vaccine should target tubercle bacilli with various metabolic states and confer long-term protective immunity. In this study, we constructed a novel multi-stage TB subunit vaccine based on fusion protein ESAT6-Ag85B-MPT64(190-198)-Mtb8.4-HspX (LT69 for short) which combined early expressed antigens and latency-associated antigen. The fusion protein was mixed with an adjuvant being composed of N, N’-dimethyl-N, N’-dioctadecylammonium bromide (DDA) and polyriboinosinic polyribocytidylic acid (PolyI:C) to construct subunit vaccine, whose immunogenicity and protective ability were evaluated in C57BL/6 mice. The results showed that LT69 had strong immunogenicity and high protective effect against Mycobacterium tuberculosis (M. tuberculosis) H37Rv aerosol challenge. Low-dose (2 μg) of LT69 generated long-term immune memory responses and provided effective protection, which was even higher than traditional vaccine BCG did at 30 weeks post the last vaccination. In conclusion, multistage subunit vaccine LT69 showed high and long-term protection against M. tuberculosis infection in mice, whose effect could be enhanced by using a relative low dosage of antigen.National Major Science and Technology Projects (China) (2012ZX10003-008-006)National Natural Science Foundation (China) (31470895)National Natural Science Foundation (China) (81072499)China. Ministry of Education (Doctoral Fund 20120211110038

    Immune and oxidative stress disorder in ovulation-dysfunction women revealed by single-cell transcriptome

    Get PDF
    IntroductionOvulation dysfunction is now a widespread cause of infertility around the world. Although the impact of immune cells in human reproduction has been widely investigated, systematic understanding of the changes of the immune atlas under female ovulation remain less understood.MethodsHere, we generated single cell transcriptomic profiles of 80,689 PBMCs in three representative statuses of ovulation dysfunction, i.e., polycystic ovary syndrome (PCOS), primary ovarian insufficiency (POI) and menopause (MENO), and identified totally 7 major cell types and 25 subsets of cells.ResultsOur study revealed distinct cluster distributions of immune cells among individuals of ovulation disorders and health. In patients with ovulation dysfunction, we observed a significant reduction in populations of naïve CD8 T cells and effector memory CD4 T cells, whereas circulating NK cells and regulatory NK cells increased.DiscussionOur results highlight the significant contribution of cDC-mediated signaling pathways to the overall inflammatory response within ovulation disorders. Furthermore, our data demonstrated a significant upregulation of oxidative stress in patients with ovulation disorder. Overall, our study gave a deeper insight into the mechanism of PCOS, POI, and menopause, which may contribute to the better diagnosis and treatments of these ovulatory disorder

    Cathepsin K activity controls cardiotoxin‐induced skeletal muscle repair in mice

    Get PDF
    Abstract Background: Cathepsin K (CatK) is a widely expressed cysteine protease that has gained attention because of its enzymatic and non‐enzymatic functions in signalling. Here, we examined whether CatK‐deficiency (CatK−/−) would mitigate injury‐related skeletal muscle remodelling and fibrosis in mice, with a special focus on inflammation and muscle cell apoptosis. Methods: Cardiotoxin (CTX, 20 μM/200 μL) was injected into the left gastrocnemius muscle of male wild‐type (CatK+/+) and CatK−/− mice, and the mice were processed for morphological and biochemical studies. Results: On post‐injection Day 14, CatK deletion ameliorated muscle interstitial fibrosis and remodelling and performance. At an early time point (Day 3), CatK−/− reduced the lesion macrophage and leucocyte contents and cell apoptosis, the mRNA levels of monocyte chemoattractant protein‐1, toll‐like receptor‐2 and toll‐like receptor‐4, and the gelatinolytic activity related to matrix metalloproteinase‐2/‐9. CatK deletion also restored the protein levels of caspase‐3 and cleaved caspase‐8 and the ratio of the BAX to the Bcl‐2. Moreover, CatK deficiency protected muscle fibre laminin and desmin disorder in response to CTX injury. These beneficial muscle effects were mimicked by CatK‐specific inhibitor treatment. In vitro experiments demonstrated that pharmacological CatK inhibition reduced the apoptosis of C2C12 mouse myoblasts and the levels of BAX and caspase‐3 proteins induced by CTX. Conclusions: These results demonstrate that CatK plays an essential role in skeletal muscle loss and fibrosis in response to CTX injury, possibly via a reduction of inflammation and cell apoptosis, suggesting a novel therapeutic strategy for the control of skeletal muscle diseases by regulating CatK activity

    Potassium Starvation in Yeast: Mechanisms of Homeostasis Revealed by Mathematical Modeling

    Get PDF
    The intrinsic ability of cells to adapt to a wide range of environmental conditions is a fundamental process required for survival. Potassium is the most abundant cation in living cells and is required for essential cellular processes, including the regulation of cell volume, pH and protein synthesis. Yeast cells can grow from low micromolar to molar potassium concentrations and utilize sophisticated control mechanisms to keep the internal potassium concentration in a viable range. We developed a mathematical model for Saccharomyces cerevisiae to explore the complex interplay between biophysical forces and molecular regulation facilitating potassium homeostasis. By using a novel inference method (“the reverse tracking algorithm”) we predicted and then verified experimentally that the main regulators under conditions of potassium starvation are proton fluxes responding to changes of potassium concentrations. In contrast to the prevailing view, we show that regulation of the main potassium transport systems (Trk1,2 and Nha1) in the plasma membrane is not sufficient to achieve homeostasis

    MiR-218 Inhibits Invasion and Metastasis of Gastric Cancer by Targeting the Robo1 Receptor

    Get PDF
    MicroRNAs play key roles in tumor metastasis. Here, we describe the regulation and function of miR-218 in gastric cancer (GC) metastasis. miR-218 expression is decreased along with the expression of one of its host genes, Slit3 in metastatic GC. However, Robo1, one of several Slit receptors, is negatively regulated by miR-218, thus establishing a negative feedback loop. Decreased miR-218 levels eliminate Robo1 repression, which activates the Slit-Robo1 pathway through the interaction between Robo1 and Slit2, thus triggering tumor metastasis. The restoration of miR-218 suppresses Robo1 expression and inhibits tumor cell invasion and metastasis in vitro and in vivo. Taken together, our results describe a Slit-miR-218-Robo1 regulatory circuit whose disruption may contribute to GC metastasis. Targeting miR-218 may provide a strategy for blocking tumor metastasis
    corecore