114,682 research outputs found
Depolarization-activated potentiation of the T fiber synapse in the blue crab
The blue crab T fiber synapse, associated with the stretch receptor of the swimming leg, has a nonspiking presynaptic element that mediates tonic transmission. This synapse was isolated and a voltage clamp circuit was used to control the membrane potential at the release sites. The dependence of transmitter release on extracellular calcium, [Ca]o, was studied over a range of 2.5-40 mM. A power relationship of 2.7 was obtained between excitatory postsynaptic potential (EPSP) rate of rise and [Ca]o. Brief presynaptic depolarizing steps, 5-10 ms, presented at 0.5 Hz activated EPSP's of constant amplitude. Inserting a 300-ms pulse (conditioning pulse) between these test pulses potentiated the subsequent test EPSPs. This depolarization-activated potentiation (DAP) lasted for 10-20 s and decayed with a single exponential time course. The decay time course remained invariant with test pulse frequencies ranging from 0.11 to 1.1 Hz. The magnitude and decay time course of DAP were independent of the test pulse amplitudes. The magnitude of DAP was a function of conditioning pulse amplitudes. Large conditioning pulses activated large potentiations, whereas the decay time constants were not changed. The DAP is a Ca-dependent process. When the amplitude of conditioning pulses approached the Ca equilibrium potential, the magnitude of potentiation decreased. Repeated application of conditioning pulses, at 2-s intervals, did not produce additional potentiation beyond the level activated by the first conditioning pulse. Comparison of the conditioning EPSP waveforms activated repetitively indicated that potentiation lasted transiently, 100 ms, during a prolonged release. Possible mechanisms of the potentiation are discussed in light of these new findings.The blue crab T fiber synapse, associated with the stretch receptor of the swimming leg, has a nonspiking presynaptic element that mediates tonic transmission. This synapse was isolated and a voltage clamp circuit was used to control the membrane potential at the release sites. The dependence of transmitter release on extracellular calcium, [Ca]o, was studied over a range of 2.5-40 mM. A power relationship of 2.7 was obtained between excitatory postsynaptic potential (EPSP) rate of rise and [Ca]o. Brief presynaptic depolarizing steps, 5-10 ms, presented at 0.5 Hz activated EPSP's of constant amplitude. Inserting a 300-ms pulse (conditioning pulse) between these test pulses potentiated the subsequent test EPSPs. This depolarization-activated potentiation (DAP) lasted for 10-20 s and decayed with a single exponential time course. The decay time course remained invariant with test pulse frequencies ranging from 0.11 to 1.1 Hz. The magnitude and decay time course of DAP were independent of the test pulse amplitudes. The magnitude of DAP was a function of conditioning pulse amplitudes. Large conditioning pulses activated large potentiations, whereas the decay time constants were not changed. The DAP is a Ca-dependent process. When the amplitude of conditioning pulses approached the Ca equilibrium potential, the magnitude of potentiation decreased. Repeated application of conditioning pulses, at 2-s intervals, did not produce additional potentiation beyond the level activated by the first conditioning pulse. Comparison of the conditioning EPSP waveforms activated repetitively indicated that potentiation lasted transiently, 100 ms, during a prolonged release. Possible mechanisms of the potentiation are discussed in light of these new findings.NS-07942 - NINDS NIH HHS; NS-13742 - NINDS NIH HH
Low Redshift QSO Lyman alpha Absorption Line Systems Associated with Galaxies
In this paper we present Monte-Carlo simulations of Lyman alpha absorption
systems which originate in galactic haloes, galaxy discs and dark matter (DM)
satellites around big central haloes. It is found that for strong Lyman alpha
absorption lines galactic haloes and satellites can explain ~20% and 40% of the
line number density of QSO absorption line key project respectively. If big
galaxies indeed possess such large numbers of DM satellites and they possess
gas, these satellites may play an important role for strong Lyman alpha lines.
However the predicted number density of Lyman-limit systems by satellites is
\~0.1 (per unit redshift), which is four times smaller than that by halo
clouds. Including galactic haloes, satellites and HI discs of spirals, the
predicted number density of strong lines can be as much as 60% of the HST
result. The models can also predict all of the observed Lyman-limit systems.
The average covering factor within 250 kpc/h is estimated to be ~0.36. And the
effective absorption radius of a galaxy is estimated to be ~150 kpc/h. The
models predict W_r propto rho^{-0.5} L_B^{0.15} (1+z)^{-0.5}. We study the
selection effects of selection criteria similar to the imaging and
spectroscopic surveys. We simulate mock observations through known QSO
lines-of-sight and find that selection effects can statistically tighten the
dependence of line width on projected distance. (abridged)Comment: 23 pages, 9 postscript figures; references updated, minor change in
section
Binding energies of hydrogen-like impurities in a semiconductor in intense terahertz laser fields
A detailed theoretical study is presented for the influence of linearly
polarised intense terahertz (THz) laser radiation on energy states of
hydrogen-like impurities in semiconductors. The dependence of the binding
energy for 1s and 2p states on intensity and frequency of the THz radiation has
been examined.Comment: 14 pages, 4 figure
Watermarking FPGA Bitfile for Intellectual Property Protection
Intellectual property protection (IPP) of hardware designs is the most important requirement for many Field Programmable Gate Array (FPGA) intellectual property (IP) vendors. Digital watermarking has become an innovative technology for IPP in recent years. Existing watermarking techniques have successfully embedded watermark into IP cores. However, many of these techniques share two specific weaknesses: 1) They have extra overhead, and are likely to degrade performance of design; 2) vulnerability to removing attacks. We propose a novel watermarking technique to watermark FPGA bitfile for addressing these weaknesses. Experimental results and analysis show that the proposed technique incurs zero overhead and it is robust against removing attacks
Axisymmetric Dynamic Response of Spherical and Cylindrical Shells
Axisymmetric dynamic response of spherical and cylindrical shell
Unusual Tunneling Characteristics of Double-quantum-well Heterostructures
We report tunneling phenomena in double InGaAs quantum-well
structures that are at odds with the conventional parallel-momentum-conserving
picture of tunneling between two-dimensional systems. We found that the
tunneling current was mostly determined by the correlation between the emitter
and the state in one well, and not by that between those in both wells. Clear
magnetic-field-dependent features were first observed before the main
resonance, corresponding to tunneling channels into the Landau levels of the
well near the emitter. These facts provide evidence of the violation of
in-plane momentum conservation in two-dimensional systems.Comment: Submitted to ICPS-27 conference proceeding as a contributed pape
Characterizing time series : when Granger causality triggers complex networks
In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIH* human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length
- âŠ