We report tunneling phenomena in double In0.53Ga0.47As quantum-well
structures that are at odds with the conventional parallel-momentum-conserving
picture of tunneling between two-dimensional systems. We found that the
tunneling current was mostly determined by the correlation between the emitter
and the state in one well, and not by that between those in both wells. Clear
magnetic-field-dependent features were first observed before the main
resonance, corresponding to tunneling channels into the Landau levels of the
well near the emitter. These facts provide evidence of the violation of
in-plane momentum conservation in two-dimensional systems.Comment: Submitted to ICPS-27 conference proceeding as a contributed pape