96 research outputs found

    Effectiveness of denosumab for fracture prevention in real-world postmenopausal women with osteoporosis: a retrospective cohort study

    Get PDF
    Summary: To determine denosumab’s effectiveness for fracture prevention among postmenopausal women with osteoporosis in East Asia, the risk of fracture was compared between patients continuing denosumab therapy versus patients discontinuing denosumab after one dose. The real-world effectiveness was observed to be consistent with the efficacy demonstrated in the phase III trial. Introduction: After therapeutic efficacy is demonstrated for subjects in global clinical trials, real-world evidence may provide complementary knowledge of therapeutic effectiveness in a heterogeneous mix of patients seen in clinical practice. This retrospective cohort study was conducted to compare the fracture risk in real-world clinical care received in Taiwan and Hong Kong between a treatment cohort (patients receiving denosumab 60 mg subcutaneously every 6 months) versus an off-treatment cohort (patients discontinuing after 1 dose of denosumab, which has no known clinical benefit) among real-world postmenopausal women. Methods: This study included 38,906 and 2,835 postmenopausal women receiving denosumab in Taiwan and Hong Kong, respectively. The primary endpoint was hip fracture, and secondary endpoints were clinical vertebral and nonvertebral fractures. Propensity-score-matched analysis, adjusting for known covariates, was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). The robustness of findings was evaluated with a series of sensitivity and quantitative bias analyses. Results: In this study, 554 hip fractures were included in the primary Taiwan population analysis. The crude incidence rate was 0.9 per 100 person-years in the treatment cohort (n = 25,059) and 1.7 per 100 person-years in the off-treatment cohort (n = 13,847). After adjusting for prognostic differences between cohorts, denosumab reduced the risk of hip fractures by 38% (HR = 0.62, CI:0.52–0.75). Risk reductions of similar magnitude were observed for the secondary endpoints and for the analysis of the smaller Hong Kong population. Conclusion: The effectiveness of denosumab for fracture reduction among real-world postmenopausal women with osteoporosis was consistent with the efficacy demonstrated in a global clinical trial

    A novel, simple, and sensitive colorimetric method to determine aromatic amino acid aminotransferase activity using the Salkowski reagent

    Get PDF
    This study describes the development of a new colorimetric assay to determine aromatic amino acid aminotransferase (ArAT) activity. The assay is based on the transamination of l-tryptophan in the presence of 2-oxoglutarate, which yields indole-3-pyruvate (IPyA). The amount of IPyA formed was quantified by reaction with the Salkowski reagent. Optimized assay conditions are presented for ArAT isozymes isolated from Pseudomonas putida. For comparative purposes, ArAT activity was also determined by high-performance liquid chromatography. ArAT activity staining in polyacrylamide gels with the Salkowski reagent is also presented

    Mixed Climatology, Non-synoptic Phenomena and Downburst Wind Loading of Structures

    Get PDF
    Modern wind engineering was born in 1961, when Davenport published a paper in which meteorology, micrometeorology, climatology, bluff-body aerodynamics and structural dynamics were embedded within a homogeneous framework of the wind loading of structures called today \u201cDavenport chain\u201d. Idealizing the wind with a synoptic extra-tropical cyclone, this model was so simple and elegant as to become a sort of axiom. Between 1976 and 1977 Gomes and Vickery separated thunderstorm from non-thunderstorm winds, determined their disjoint extreme distributions and derived a mixed model later extended to other Aeolian phenomena; this study, which represents a milestone in mixed climatology, proved the impossibility of labelling a heterogeneous range of events by the generic term \u201cwind\u201d. This paper provides an overview of this matter, with particular regard to the studies conducted at the University of Genova on thunderstorm downbursts

    Variable Carbon Catabolism among Salmonella enterica Serovar Typhi Isolates

    Get PDF
    BACKGROUND: Salmonella enterica serovar Typhi (S. Typhi) is strictly a human intracellular pathogen. It causes acute systemic (typhoid fever) and chronic infections that result in long-term asymptomatic human carriage. S. Typhi displays diverse disease manifestations in human infection and exhibits high clonality. The principal factors underlying the unique lifestyle of S. Typhi in its human host during acute and chronic infections remain largely unknown and are therefore the main objective of this study. METHODOLOGY/PRINCIPAL FINDINGS: To obtain insight into the intracellular lifestyle of S. Typhi, a high-throughput phenotypic microarray was employed to characterise the catabolic capacity of 190 carbon sources in S. Typhi strains. The success of this study lies in the carefully selected library of S. Typhi strains, including strains from two geographically distinct areas of typhoid endemicity, an asymptomatic human carrier, clinical stools and blood samples and sewage-contaminated rivers. An extremely low carbon catabolic capacity (27% of 190 carbon substrates) was observed among the strains. The carbon catabolic profiles appeared to suggest that S. Typhi strains survived well on carbon subtrates that are found abundantly in the human body but not in others. The strains could not utilise plant-associated carbon substrates. In addition, α-glycerolphosphate, glycerol, L-serine, pyruvate and lactate served as better carbon sources to monosaccharides in the S. Typhi strains tested. CONCLUSION: The carbon catabolic profiles suggest that S. Typhi could survive and persist well in the nutrient depleted metabolic niches in the human host but not in the environment outside of the host. These findings serve as caveats for future studies to understand how carbon catabolism relates to the pathogenesis and transmission of this pathogen

    Hypoglycemia Revisited in the Acute Care Setting

    Get PDF
    Hypoglycemia is a common finding in both daily clinical practice and acute care settings. The causes of severe hypoglycemia (SH) are multi-factorial and the major etiologies are iatrogenic, infectious diseases with sepsis and tumor or autoimmune diseases. With the advent of aggressive lowering of HbA1c values to achieve optimal glycemic control, patients are at increased risk of hypoglycemic episodes. Iatrogenic hypoglycemia can cause recurrent morbidity, sometime irreversible neurologic complications and even death, and further preclude maintenance of euglycemia over a lifetime of diabetes. Recent studies have shown that hypoglycemia is associated with adverse outcomes in many acute illnesses. In addition, hypoglycemia is associated with increased mortality among elderly and non-diabetic hospitalized patients. Clinicians should have high clinical suspicion of subtle symptoms of hypoglycemia and provide prompt treatment. Clinicians should know that hypoglycemia is associated with considerable adverse outcomes in many acute critical illnesses. In order to reduce hypoglycemia-associated morbidity and mortality, timely health education programs and close monitoring should be applied to those diabetic patients presenting to the Emergency Department with SH. ED disposition strategies should be further validated and justified to achieve balance between the benefits of euglycemia and the risks of SH. We discuss relevant issues regarding hypoglycemia in emergency and critical care settings

    A Novel Mechanism of Transposon-Mediated Gene Activation

    Get PDF
    Transposable Insertion Sequences (IS elements) have been shown to provide various benefits to their hosts via gene activation or inactivation under stress conditions by appropriately inserting into specific chromosomal sites. Activation is usually due to derepression or introduction of a complete or partial promoter located within the element. Here we define a novel mechanism of gene activation by the transposon IS5 in Escherichia coli. The glycerol utilization operon, glpFK, that is silent in the absence of the cAMP-Crp complex, is activated by IS5 when inserted upstream of its promoter. High-level expression is nearly constitutive, only mildly dependent on glycerol, glucose, GlpR, and Crp, and allows growth at a rate similar to or more rapid than that of wild-type cells. Expression is from the glpFK promoter and dependent on (1) the DNA phase, (2) integration host factor (IHF), and (3) a short region at the 3′ end of IS5 harboring a permanent bend and an IHF binding site. The lacZYA operon is also subject to such activation in the absence of Crp. Thus, we have defined a novel mechanism of gene activation involving transposon insertion that may be generally applicable to many organisms

    Carbon-starvation induction of the ugp operon, encoding the binding protein-dependent sn -glycerol-3-phosphate transport system in Escherichia coli

    Full text link
    The gene products of the ugp operon of Escherichia coli are responsible for the uptake of sn -glycerol-3-phosphate and certain glycerophosphodiesters. The regulation of ugp is mainly phoBR -dependent. Significant expression, however, can be observed even in the presence of high concentrations of phosphate, a condition which normally completely represses pho expression. Pho -independent ugp expression was found to be derepressed during the late logarithmic growth phase due to carbon starvation. Among different carbon sources tested, glucose caused the most complete repression. Addition of cAMP prevented glucose repression, indicating that a cAMP-CRP control mechanism may be directly or indirectly involved in the carbon-starvation response. This conclusion is supported by the fact that pho -independent ugp expression correlated with the presence of the cya and crp gene products.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47580/1/438_2004_Article_BF00290646.pd

    Genome Sequence of Fusobacterium nucleatum Subspecies Polymorphum — a Genetically Tractable Fusobacterium

    Get PDF
    Fusobacterium nucleatum is a prominent member of the oral microbiota and is a common cause of human infection. F. nucleatum includes five subspecies: polymorphum, nucleatum, vincentii, fusiforme, and animalis. F. nucleatum subsp. polymorphum ATCC 10953 has been well characterized phenotypically and, in contrast to previously sequenced strains, is amenable to gene transfer. We sequenced and annotated the 2,429,698 bp genome of F. nucleatum subsp. polymorphum ATCC 10953. Plasmid pFN3 from the strain was also sequenced and analyzed. When compared to the other two available fusobacterial genomes (F. nucleatum subsp. nucleatum, and F. nucleatum subsp. vincentii) 627 open reading frames unique to F. nucleatum subsp. polymorphum ATCC 10953 were identified. A large percentage of these mapped within one of 28 regions or islands containing five or more genes. Seventeen percent of the clustered proteins that demonstrated similarity were most similar to proteins from the clostridia, with others being most similar to proteins from other gram-positive organisms such as Bacillus and Streptococcus. A ten kilobase region homologous to the Salmonella typhimurium propanediol utilization locus was identified, as was a prophage and integrated conjugal plasmid. The genome contains five composite ribozyme/transposons, similar to the CdISt IStrons described in Clostridium difficile. IStrons are not present in the other fusobacterial genomes. These findings indicate that F. nucleatum subsp. polymorphum is proficient at horizontal gene transfer and that exchange with the Firmicutes, particularly the Clostridia, is common

    Enzymatic determination of dihydroxyacetone in the presence of glycerol

    No full text
    corecore