1,516 research outputs found

    Two-temperature relaxation and melting after absorption of femtosecond laser pulse

    Full text link
    The theory and experiments concerned with the electron-ion thermal relaxation and melting of overheated crystal lattice constitute the subject of this paper. The physical model includes two-temperature equation of state, many-body interatomic potential, the electron-ion energy exchange, electron thermal conductivity, and optical properties of solid, liquid, and two phase solid-liquid mixture. Two-temperature hydrodynamics and molecular dynamics codes are used. An experimental setup with pump-probe technique is used to follow evolution of an irradiated target with a short time step 100 fs between the probe femtosecond laser pulses. Accuracy of measurements of reflection coefficient and phase of reflected probe light are ~1% and \sim 1\un{nm}, respectively. It is found that, {\it firstly}, the electron-electron collisions make a minor contribution to a light absorbtion in solid Al at moderate intensities; {\it secondly}, the phase shift of a reflected probe results from heating of ion subsystem and kinetics of melting of Al crystal during 0 where tt is time delay between the pump and probe pulses measured from the maximum of the pump; {\it thirdly} the optical response of Au to a pump shows a marked contrast to that of Al on account of excitation of \textit{d}-electronsComment: 6th International Conference on Photo-Excited Processes and Applications 9-12 Sep 2008, Sapporo, Japan, http://www.icpepa6.com, the contributed paper will be published in Applied Surface Science(2009

    Homoclinic crossing in open systems: Chaos in periodically perturbed monopole plus quadrupolelike potentials

    Get PDF
    The Melnikov method is applied to periodically perturbed open systems modeled by an inverse--square--law attraction center plus a quadrupolelike term. A compactification approach that regularizes periodic orbits at infinity is introduced. The (modified) Smale-Birkhoff homoclinic theorem is used to study transversal homoclinic intersections. A larger class of open systems with degenerated (nonhyperbolic) unstable periodic orbits after regularization is also briefly considered.Comment: 19 pages, 15 figures, Revtex

    Innovative ligand-assisted synthesis of NIR-activated iron oxide for cancer theranostics

    Get PDF
    This work presents the development of a facile ligand-assisted hydrothermal reaction for the preparation of NIR-activated Fe3O4 nanostructures that can directly upgrade the iron oxide with MR contrast ability to be a MRI/photothermal theranostic agent

    Towards Controlling the Acceptance Factors for a Collaborative Platform in Engineering Design

    No full text
    International audienceThis paper might serve as a guide to take step towards a better acceptance of computer-based Knowledge management (KM) tools in institutional setting. At first time, it investigates a set of factors with different origins which are proved to have an effect on usage decision. Secondly, we set a list of candidate factor which are supposed to influence future users of a collaborative KM platform (Dimocode). At the end, we develop a methodology to take into account the selected factors and master their positive or negative impacts. The contents of this paper would be an appropriate framework in the way of Knowledge management systems (KMS) deployment

    Impact of spacer on membrane gas separation performance

    Get PDF
    Mixing in gas separation membranes has received much less attention than in membrane liquid separation because gas molecules have much smaller viscosity, allowing them to diffuse easily through membranes without requiring significant flow mixing. However, due to advancements in membrane fabrication technologies aimed at improving material properties, concentration polarization (CP) might become an issue in gas separation due to enhanced membrane efficiency and permeability. Consequently, a 2D CFD analysis is conducted to evaluate the impact of spacer-induced mixing on membrane gas concentration polarization for typical CO2/CH4 gas separation. Results show that spacers generally enhance flux performance while reducing CP in the membrane channel when compared to the case without spacers. Furthermore, the effectiveness of spacer-flux-to-pressure-loss-ratio (SPFP) reaches a peak for a Reynolds number in the range of 5 <Reh< 200 because of the trade-off between flux and pressure drop. This mixing-induced flux enhancement is most effective under high CP conditions (less mixing) within the membrane channel. Similarly, flux enhancement due to spacers can be observed as membrane selectivity, pressure ratio and feed gas concentration increase due to enhanced CP

    Логіко-лінгвістична модель як засіб відображення синтаксичних особливостей текстової інформації

    Get PDF
    Запропоновано використовувати логіко-лінгвістичні моделі як засіб відображення синтаксичних особливостей текстової інформації, перелічено та обґрунтовано правила їх формування, наведено алгоритм створення всіх складових таких моделей.Предложено использовать логико-лингвистические модели как способ отображения синтаксических особенностей текстовой информации, перечислены и обоснованы правила их формирования, приведен алгоритм создания всех составных таких моделей.It is suggested using a logico-linguistic model as a method of display the syntactical features of text information. There are listed and justified the rules for their forming and also are shown an algorithm of creation of all components of such models in this paper

    Membrane Instantons and de Sitter Vacua

    Full text link
    We investigate membrane instanton effects in type IIA strings compactified on rigid Calabi-Yau manifolds. These effects contribute to the low-energy effective action of the universal hypermultiplet. In the absence of additional fivebrane instantons, the quaternionic geometry of this hypermultiplet is determined by solutions of the three-dimensional Toda equation. We construct solutions describing membrane instantons, and find perfect agreement with the string theory prediction. In the context of flux compactifications we discuss how membrane instantons contribute to the scalar potential and the stabilization of moduli. Finally, we demonstrate the existence of meta-stable de Sitter vacua.Comment: v3: minor clarifications, JHEP version, 38 page

    Wilson Loops, Geometric Transitions and Bubbling Calabi-Yau's

    Get PDF
    Motivated by recent developments in the AdS/CFT correspondence, we provide several alternative bulk descriptions of an arbitrary Wilson loop operator in Chern-Simons theory. Wilson loop operators in Chern-Simons theory can be given a description in terms of a configuration of branes or alternatively anti-branes in the resolved conifold geometry. The representation of the Wilson loop is encoded in the holonomy of the gauge field living on the dual brane configuration. By letting the branes undergo a new type of geometric transition, we argue that each Wilson loop operator can also be described by a bubbling Calabi-Yau geometry, whose topology encodes the representation of the Wilson loop. These Calabi-Yau manifolds provide a novel representation of knot invariants. For the unknot we confirm these identifications to all orders in the genus expansion.Comment: 26 pages; v.2 typos corrected, explanations clarified; v.3 typos corrected, reference adde

    Damping mechanisms for oscillations in solar prominences

    Full text link
    Small amplitude oscillations are a commonly observed feature in prominences/filaments. These oscillations appear to be of local nature, are associated to the fine structure of prominence plasmas, and simultaneous flows and counterflows are also present. The existing observational evidence reveals that small amplitude oscillations, after excited, are damped in short spatial and temporal scales by some as yet not well determined physical mechanism(s). Commonly, these oscillations have been interpreted in terms of linear magnetohydrodynamic (MHD) waves, and this paper reviews the theoretical damping mechanisms that have been recently put forward in order to explain the observed attenuation scales. These mechanisms include thermal effects, through non-adiabatic processes, mass flows, resonant damping in non-uniform media, and partial ionization effects. The relevance of each mechanism is assessed by comparing the spatial and time scales produced by each of them with those obtained from observations. Also, the application of the latest theoretical results to perform prominence seismology is discussed, aiming to determine physical parameters in prominence plasmas that are difficult to measure by direct means.Comment: 36 pages, 16 figures, Space Science Reviews (accepted

    Euler Top Dynamics of Nambu-Goto P-Branes

    Full text link
    We propose a method to obtain new exact solutions of spinning p-branes in flat space-times for any p, which manifest themselves as higher dimensional Euler Tops and minimize their energy functional. We provide concrete examples for the case of spherical topology S^{2}, S^{3} and rotational symmetry \prod_{i}SO(q_{i}). In the case of toroidal topology T^{2}, T^{3} the rotational symmetry is \prod SU(q_{i}) and m target dimensions are compactified on the torus T^{m} . By double dimensional reduction the Light Cone Hamiltonians of T^{2}, T^{3} reduce to those of closed string S^{1} and T^{2} membranes respectively. The solutions are interpreted as non-perturbative spinning soliton states of type IIA-IIB superstrings.Comment: 33 pages, LATEX; more typos corrected; some equation numbering correction
    corecore