25 research outputs found

    The long noncoding RNA THRIL regulates TNFalpha expression through its interaction with hnRNPL

    Get PDF
    Thousands of large intergenic noncoding RNAs (lincRNAs) have been identified in the mammalian genome, many of which have important roles in regulating a variety of biological processes. Here, we used a custom microarray to identify lincRNAs associated with activation of the innate immune response. A panel of 159 lincRNAs was found to be differentially expressed following innate activation of THP1 macrophages. Among them, linc1992 was shown to be expressed in many human tissues and was required for induction of TNFalpha expression. Linc1992 bound specifically to heterogenous nuclear ribonucleoprotein L (hnRNPL) and formed a functional linc1992-hnRNPL complex that regulated transcription of the TNFalpha gene by binding to its promoter. Transcriptome analysis revealed that linc1992 was required for expression of many immune-response genes, including other cytokines and transcriptional and posttranscriptional regulators of TNFalpha expression, and that knockdown of linc1992 caused dysregulation of these genes during innate activation of THP1 macrophages. Therefore, we named linc1992 THRIL (TNFalpha and hnRNPL related immunoregulatory LincRNA). Finally, THRIL expression was correlated with the severity of symptoms in patients with Kawasaki disease, an acute inflammatory disease of childhood. Collectively, our data provide evidence that lincRNAs and their binding proteins can regulate TNFalpha expression and may play important roles in the innate immune response and inflammatory diseases in humans

    Receptor-Associated Protein (RAP) Plays a Central Role in Modulating Aβ Deposition in APP/PS1 Transgenic Mice

    Get PDF
    BACKGROUND: Receptor associated protein (RAP) functions in the endoplasmic reticulum (ER) to assist in the maturation of several membrane receptor proteins, including low density lipoprotein receptor-related protein (LRP) and lipoprotein receptor 11 (SorLA/LR11). Previous studies in cell and mouse model systems have demonstrated that these proteins play roles in the metabolism of the amyloid precursor protein (APP), including processes involved in the generation, catabolism and deposition of beta-amyloid (Abeta) peptides. METHODOLOGY/PRINCIPAL FINDINGS: Mice transgenic for mutant APPswe and mutant presenilin 1 (PS1dE9) were mated to mice with homozygous deletion of RAP. Unexpectedly, mice that were homozygous null for RAP and transgenic for APPswe/PS1dE9 showed high post-natal mortality, necessitating a shift in focus to examine the levels of amyloid deposition in APPswe/PS1dE9 that were hemizygous null for RAP. Immunoblot analysis confirmed 50% reductions in the levels of RAP with modest reductions in the levels of proteins dependent upon RAP for maturation [LRP trend towards a 20% reduction ; SorLA/LR11 statistically significant 15% reduction (p<0.05)]. Changes in the levels of these proteins in the brains of [APPswe/PS1dE9](+/-)/RAP(+/-) mice correlated with 30-40% increases in amyloid deposition by 9 months of age. CONCLUSIONS/SIGNIFICANCE: Partial reductions in the ER chaperone RAP enhance amyloid deposition in the APPswe/PS1dE9 model of Alzheimer amyloidosis. Partial reductions in RAP also affect the maturation of LRP and SorLA/LR11, which are each involved in several different aspects of APP processing and Abeta catabolism. Together, these findings suggest a central role for RAP in Alzheimer amyloidogenesis

    Epigenetic Blocking of an Enhancer Region Controls Irradiation-Induced Proapoptotic Gene Expression in Drosophila Embryos

    Get PDF
    Drosophila embryos are highly sensitive to γ-ray-induced apoptosis at early but not later, more differentiated stages during development. Two proapoptotic genes, reaper and hid, are upregulated rapidly following irradiation. However, in post-stage-12 embryos, in which most cells have begun differentiation, neither proapoptotic gene can be induced by high doses of irradiation. Our study indicates that the sensitive-to-resistant transition is due to epigenetic blocking of the irradiation-responsive enhancer region (IRER), which is located upstream of reaper but is also required for the induction of hid in response to irradiation. This IRER, but not the transcribed regions of reaper/hid, becomes enriched for trimethylated H3K27/H3K9 and forms a heterochromatin-like structure during the sensitive-to-resistant transition. The functions of histone-modifying enzymes Hdac1(rpd3) and Su(var)3-9 and PcG proteins Su(z)12 and Polycomb are required for this process. Thus, direct epigenetic regulation of two proapoptotic genes controls cellular sensitivity to cytotoxic stimuli

    TFEB, TFE3 and MITF promote lysosome biogenesis in response to lysosomotropic Drugs.

    No full text
    <p>Relative mRNA expression of cathepsin D and LAMP2 was measured using RT-PCR (A). Quantification data in each panel was presented as fold change of mRNA expression in the treatment group compared to control (mean ± SD), * p ≤ 0.05. Tested drugs include chloroquine (CQ), fluoxetine (FX), imipramine (IP), dimebon (DM), tamoxifen (TM), chloropromazine (CP), amitriptyline (AT), and verapamil (VP); Relative mRNA expression of cathepsin D, LAMP2, TFEB, TFE3 and MITF was measured using RT-PCR with TFEB, TFE3 and MITF knockdown and selected drugs (B), Quantification data is presented as fold change of mRNA expression either in the treatment group compared to DMSO control (mean ± SD) or under knockdown condition compared to control siRNA treatment (mean ± SD), * p ≤ 0.05.</p

    Decreased lysosomal function.

    No full text
    <p>Effect of drug treatment on the abundance of p62 protein and mRNA (A); GAPDH protein and mRNA (B); phospholipid (C); and opsin (D). Quantification data in each panel is presented as fold change of total signal intensity compared to control (mean ± SD), * p ≤ 0.05. Tested drugs include chloroquine (CQ), fluoxetine (FX), imipramine (IP), dimebon (DM), tamoxifen (TM), chloropromazine (CP), amitriptyline (AT), and verapamil (VP).</p

    Involvement of calcium in the nuclear translocation of TFEB, TFE3 and MITF, and lysosomal activation.

    No full text
    <p>Representative images for nuclear translocation of TFEB, TFE3 and MITF (A) and LTR staining (B) with and without BAPTA co-treatment. The graphs represent the percentage of total signal intensity with BAPTA co-treatment compared to corresponding drug treatment alone (mean ± SD), * p ≤ 0.05. Kinetic cytotoxicity profile with and without BAPTA co-treatment (C). Tested drugs include chloroquine (CQ), fluoxetine (FX), imipramine (IP), dimebon (DM), tamoxifen (TM), chloropromazine (CP), amitriptyline (AT), and verapamil (VP).</p
    corecore