6,129 research outputs found

    Representativeness of breast cancer cases in an integrated health care delivery system.

    Get PDF
    BackgroundIntegrated health care delivery systems, with their comprehensive and integrated electronic medical records (EMR), are well-poised to conduct research that leverages the detailed clinical data within the EMRs. However, information regarding the representativeness of these clinical populations is limited, and thus the generalizability of research findings is uncertain.MethodsUsing data from the population-based California Cancer Registry, we compared age-adjusted distributions of patient and neighborhood characteristics for three groups of breast cancer patients: 1) those diagnosed within Kaiser Permanente Northern California (KPNC), 2) non-KPNC patients from NCI-designated cancer centers, and 3) those from all other hospitals.ResultsKPNC patients represented 32 % (N = 36,109); cancer center patients represented 7 % (N = 7805); and all other hospitals represented 61 % (N = 68,330) of the total breast cancer patients from this geographic area during 1996-2009. Compared with cases from all other hospitals, KPNC had slightly fewer non-Hispanic Whites (70.6 % versus 74.4 %) but more Blacks (8.1 % versus 5.0 %), slightly more patients in the 50-69 age range and fewer in the younger and older age groups, a slightly lower proportion of in situ but higher proportion of stage I disease (41.6 % versus 38.9 %), were slightly less likely to reside in the lowest (4.2 % versus 6.5 %) and highest (36.2 % versus 39.0 %) socioeconomic status neighborhoods, and more likely to live in suburban metropolitan areas and neighborhoods with more racial/ethnic minorities. Cancer center patients differed substantially from patients from KPNC and all other hospitals on all characteristics assessed. All differences were statistically significant (p < .001).ConclusionsAlthough much of clinical research discoveries are based in academic medical centers, patients from large, integrated medical centers are likely more representative of the underlying population, providing support for the generalizability of cancer research based on electronic data from these centers

    Assessing Agreement between Radiomic Features Computed for Multiple CT Imaging Settings

    Get PDF
    Objectives: Radiomics utilizes quantitative image features (QIFs) to characterize tumor phenotype. In practice, radiological images are obtained from different vendors’ equipment using various imaging acquisition settings. Our objective was to assess the inter-setting agreement of QIFs computed from CT images by varying two parameters, slice thickness and reconstruction algorithm. Materials and Methods: CT images from an IRB-approved/HIPAA-compliant study assessing thirty-two lung cancer patients were included for the analysis. Each scan’s raw data were reconstructed into six imaging series using combinations of two reconstruction algorithms (Lung[L] and Standard[S]) and three slice thicknesses (1.25mm, 2.5mm and 5mm), i.e., 1.25L, 1.25S, 2.5L, 2.5S, 5L and 5S. For each imaging-setting, 89 well-defined QIFs were computed for each of the 32 tumors (one tumor per patient). The six settings led to 15 inter-setting comparisons (combinatorial pairs). To reduce QIF redundancy, hierarchical clustering was done. Concordance correlation coefficients (CCCs) were used to assess inter-setting agreement of the non-redundant feature groups. The CCC of each group was assessed by averaging CCCs of QIFs in the group. Results: Twenty-three non-redundant feature groups were created. Across all feature groups, the best inter-setting agreements (CCCs>0.8) were 1.25S vs 2.5S, 1.25L vs 2.5L, and 2.5S vs 5S; the worst (CCCs0.8 across all imaging settings. Conclusions: Varying degrees of inter-setting disagreements of QIFs exist when features are computed from CT images reconstructed using different algorithms and slice thicknesses. Our findings highlight the importance of harmonizing imaging acquisition for obtaining consistent QIFs to study tumor imaging phonotype

    Is Doppler ultrasound useful for evaluating gestational trophoblastic disease?

    Get PDF
    Doppler ultrasound is a non-invasive method for evaluating vascularization and is widely used in clinical practice. Gestational trophoblastic neoplasia includes a group of highly vascularized malignancies derived from placental cells. This review summarizes data found in the literature regarding the applications of Doppler ultrasound in managing patients with gestational trophoblastic neoplasia. The PubMed/Medline, Web of Science, Cochrane and LILACS databases were searched for articles published in English until 2014 using the following keywords: “Gestational trophoblastic disease AND Ultrasonography, Doppler.” Twenty-eight articles met the inclusion criteria and were separated into the 4 following groups according to the aim of the study. (1) Doppler ultrasound does not seem to be capable of differentiating partial from complete moles, but it might be useful when evaluating pregnancies in which a complete mole coexists with a normal fetus. (2) There is controversy in the role of uterine artery Doppler velocimetry in the prediction of development of gestational trophoblastic neoplasia. (3) Doppler ultrasound is a useful tool in the diagnosis of gestational trophoblastic neoplasia because abnormal myometrial vascularization and lower uterine artery Doppler indices seem to be correlated with invasive disease. (4) Lower uterine artery Doppler indices in the diagnosis of gestational trophoblastic neoplasia are associated with methotrexate resistance and might play a role in prognosis. CONCLUSION: Several studies support the importance of Doppler ultrasound in the management of patients with gestational trophoblastic neoplasia, particularly the role of Doppler velocimetry in the prediction of trophoblastic neoplasia and the chemoresistance of trophoblastic tumors. Doppler findings should be used as ancillary tools, along with human chorionic gonadotropin assessment, in the diagnosis of gestational trophoblastic neoplasia

    Evolution of accretion disks around massive black holes: constraints from the demography of active galactic nuclei

    Full text link
    Observations have shown that the Eddington ratios (the ratio of the bolometric luminosity to the Eddington luminosity) in QSOs/active galactic nuclei (AGNs) cover a wide range. In this paper we connect the demography of AGNs obtained by the Sloan Digital Sky Survey with the accretion physics around massive black holes and propose that the diversity in the Eddington ratios is a natural result of the long-term evolution of accretion disks in AGNs. The observed accretion rate distribution of AGNs (with host galaxy velocity dispersion sigma~70-200 km/s) in the nearby universe (z<0.3) is consistent with the predictions of simple theoretical models in which the accretion rates evolve in a self-similar way. We also discuss the implications of the results for the issues related to self-gravitating disks, coevolution of galaxies and QSOs/AGNs, and the unification picture of AGNs.Comment: 18 pages, 2 figures; revised, main conclusions not changed; to appear in ApJ, Oct., 200

    Thinking About Privacy: Chapter 1 of "Engaging Privacy and Information Technology in a Digital Age"

    Get PDF
    Just as recent centuries saw transitions from the agricultural to the industrial to the information age and associated societal and technological changes, the early 21st century will continue to pose dynamic challenges in many aspects of society. Most importantly from the standpoint of this report, advances in information technology are proceeding apace. In this rapidly changing technological context, individuals, institutions, and governments will be forced to reexamine core values, beliefs, laws, and social structures if their understandings of autonomy, privacy, justice, community, and democracy are to continue to have meaning. A central concept throughout U.S. history has been the notion of privacy and the creation of appropriate borders between the individual and the state. In the latter 19th century, as industrial urban society saw the rise of large bureaucratic organizations, notions of privacy were extended to the borders between private organizations and the individual. This report focuses on privacy and its intersections with information technology and associated social and technology trends

    A unified Witten-Reshetikhin-Turaev invariant for integral homology spheres

    Full text link
    We construct an invariant J_M of integral homology spheres M with values in a completion \hat{Z[q]} of the polynomial ring Z[q] such that the evaluation at each root of unity \zeta gives the the SU(2) Witten-Reshetikhin-Turaev invariant \tau_\zeta(M) of M at \zeta. Thus J_M unifies all the SU(2) Witten-Reshetikhin-Turaev invariants of M. As a consequence, \tau_\zeta(M) is an algebraic integer. Moreover, it follows that \tau_\zeta(M) as a function on \zeta behaves like an ``analytic function'' defined on the set of roots of unity. That is, the \tau_\zeta(M) for all roots of unity are determined by a "Taylor expansion" at any root of unity, and also by the values at infinitely many roots of unity of prime power orders. In particular, \tau_\zeta(M) for all roots of unity are determined by the Ohtsuki series, which can be regarded as the Taylor expansion at q=1.Comment: 66 pages, 8 figure

    Discovering Valuable Items from Massive Data

    Full text link
    Suppose there is a large collection of items, each with an associated cost and an inherent utility that is revealed only once we commit to selecting it. Given a budget on the cumulative cost of the selected items, how can we pick a subset of maximal value? This task generalizes several important problems such as multi-arm bandits, active search and the knapsack problem. We present an algorithm, GP-Select, which utilizes prior knowledge about similarity be- tween items, expressed as a kernel function. GP-Select uses Gaussian process prediction to balance exploration (estimating the unknown value of items) and exploitation (selecting items of high value). We extend GP-Select to be able to discover sets that simultaneously have high utility and are diverse. Our preference for diversity can be specified as an arbitrary monotone submodular function that quantifies the diminishing returns obtained when selecting similar items. Furthermore, we exploit the structure of the model updates to achieve an order of magnitude (up to 40X) speedup in our experiments without resorting to approximations. We provide strong guarantees on the performance of GP-Select and apply it to three real-world case studies of industrial relevance: (1) Refreshing a repository of prices in a Global Distribution System for the travel industry, (2) Identifying diverse, binding-affine peptides in a vaccine de- sign task and (3) Maximizing clicks in a web-scale recommender system by recommending items to users

    Well-Posedness of Nematic Liquid Crystal Flow in Luloc3(R3)L^3_{\hbox{uloc}}(\R^3)

    Full text link
    In this paper, we establish the local well-posedness for the Cauchy problem of the simplified version of hydrodynamic flow of nematic liquid crystals (\ref{LLF}) in R3\mathbb R^3 for any initial data (u0,d0)(u_0,d_0) having small Luloc3L^3_{\hbox{uloc}}-norm of (u0,d0)(u_0,\nabla d_0). Here Luloc3(R3)L^3_{\hbox{uloc}}(\mathbb R^3) is the space of uniformly locally L3L^3-integrable functions. For any initial data (u0,d0)(u_0, d_0) with small (u0,d0)L3(R3)\displaystyle |(u_0,\nabla d_0)|_{L^3(\mathbb R^3)}, we show that there exists a unique, global solution to (\ref{LLF}) which is smooth for t>0t>0 and has monotone deceasing L3L^3-energy for t0t\ge 0.Comment: 29 page

    A Protocol to Develop Practice Guidelines for Primary Care Medical Service Trips

    Get PDF
    BackgroundNorth American clinicians are increasingly participating in medical service trips (MSTs) that provide primary healthcare in Latin America and the Caribbean. Literature reviews have shown that the existence and use of evidence-based guidelines by these groups are limited, which presents potential for harm.ObjectiveThis paper proposes a 5-step methodology to develop protocols for diagnosis and treatment of conditions encountered by MST clinicians.MethodsWe reviewed the 2010 American College of Physicians guidance statement on guidelines development and developed our own adaptation. Ancestry search of the American College of Physicians statement identified specific publications that provided additional detail on key steps in the guideline development process, with additional focus given to evidence, equity, and local adaptation considerations.FindingsOur adaptation produced a 5-step process for developing locally optimized protocols for diagnosis and treatment of common conditions seen in MSTs. For specified conditions, this process includes: 1) a focused environmental scan of current practices based on grey literature protocols from MST sending organizations; 2) a review of relevant practice guidelines; 3) a literature review assessing the epidemiology, diagnosis, and treatment of the specified condition; 4) an eDelphi process with experts representing MST and Latin American and the Caribbean partner organizations assessing identified guidelines; and 5) external peer review and summary.ConclusionsThis protocol will enable the creation of practice guidelines that are based on best available evidence, local knowledge, and equitable considerations. The development of guidelines using this process could optimize the conduct of MSTs, while prioritizing input from local community partners

    Toward the End of Time

    Full text link
    The null-brane space-time provides a simple model of a big crunch/big bang singularity. A non-perturbative definition of M-theory on this space-time was recently provided using matrix theory. We derive the fermion couplings for this matrix model and study the leading quantum effects. These effects include particle production and a time-dependent potential. Our results suggest that as the null-brane develops a big crunch singularity, the usual notion of space-time is replaced by an interacting gluon phase. This gluon phase appears to constitute the end of our conventional picture of space and time.Comment: 31 pages, reference adde
    corecore