392 research outputs found

    Biomembrane-mimicking lipid bilayer system as a mechanically tunable cell substrate

    Get PDF
    Cell behavior such as cell adhesion, spreading, and contraction critically depends on the elastic properties of the extracellular matrix. It is not known, however, how cells respond to viscoelastic or plastic material properties that more closely resemble the mechanical environment that cells encounter in the body. In this report, we employ viscoelastic and plastic biomembrane-mimicking cell substrates. The compliance of the substrates can be tuned by increasing the number of polymer-tethered bilayers. This leaves the density and conformation of adhesive ligands on the top bilayer unaltered. We then observe the response of fibroblasts to these property changes. For comparison, we also study the cells on soft polyacrylamide and hard glass surfaces. Cell morphology, motility, cell stiffness, contractile forces and adhesive contact size all decrease on more compliant matrices but are less sensitive to changes in matrix dissipative properties. These data suggest that cells are able to feel and respond predominantly to the effective matrix compliance, which arises as a combination of substrate and adhesive ligand mechanical properties

    Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth

    Full text link
    Nerve injury, a significant cause of disability, may be treated more effectively using nerve guidance channels containing longitudinally aligned fibers. Aligned, electrospun nanofibers direct the neurite growth of immortalized neural stem cells, demonstrating potential for directing regenerating neurites. However, no study of neurite guidance on these fibers has yet been performed with primary neurons. Here, we examined neurites from dorsal root ganglia explants on electrospun poly- L -lactate nanofibers of high, intermediate, and random alignment. On aligned fibers, neurites grew radially outward from the ganglia and turned to follow the fibers upon contact. Neurite guidance was robust, with neurites never leaving the fibers to grow on the surrounding cover slip. To compare the alignment of neurites to that of the nanofiber substrates, Fourier methods were used to quantify the alignment. Neurite alignment, however striking, was inferior to fiber alignment on all but the randomly aligned fibers. Neurites on highly aligned substrates were 20 and 16% longer than neurites on random and intermediate fibers, respectively. Schwann cells on fibers assumed a very narrow morphology compared to those on the surrounding coverslip. The robust neurite guidance demonstrated here is a significant step toward the use of aligned, electrospun nanofibers for nerve regeneration. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57401/1/31285_ftp.pd

    Topoisomerase 1 Inhibition in MYC-Driven Cancer Promotes Aberrant R-Loop Accumulation to Induce Synthetic Lethality

    Full text link
    CRISPR screening reveals topoisomerase 1 as an immediately actionable vulnerability in cancers harboring MYC as a driver oncoprotein that can be targeted with clinically approved inhibitors. MYC is a central regulator of gene transcription and is frequently dysregulated in human cancers. As targeting MYC directly is challenging, an alternative strategy is to identify specific proteins or processes required for MYC to function as a potent cancer driver that can be targeted to result in synthetic lethality. To identify potential targets in MYC-driven cancers, we performed a genome-wide CRISPR knockout screen using an isogenic pair of breast cancer cell lines in which MYC dysregulation is the switch from benign to transformed tumor growth. Proteins that regulate R-loops were identified as a potential class of synthetic lethal targets. Dysregulated MYC elevated global transcription and coincident R-loop accumulation. Topoisomerase 1 (TOP1), a regulator of R-loops by DNA topology, was validated to be a vulnerability in cells with high MYC activity. Genetic knockdown of TOP1 in MYC-transformed cells resulted in reduced colony formation compared with control cells, demonstrating synthetic lethality. Overexpression of RNaseH1, a riboendonuclease that specifically degrades R-loops, rescued the reduction in clonogenicity induced by TOP1 deficiency, demonstrating that this vulnerability is driven by aberrant R-loop accumulation. Genetic and pharmacologic TOP1 inhibition selectively reduced the fitness of MYC-transformed tumors in vivo. Finally, drug response to TOP1 inhibitors (i.e., topotecan) significantly correlated with MYC levels and activity across panels of breast cancer cell lines and patient-derived organoids. Together, these results highlight TOP1 as a promising target for MYC-driven cancers.Significance: CRISPR screening reveals topoisomerase 1 as an immediately actionable vulnerability in cancers harboring MYC as a driver oncoprotein that can be targeted with clinically approved inhibitors

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes

    Full text link
    We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re

    Reversible Integration of Microfluidic Devices with Microelectrode Arrays for Neurobiological Applications

    Get PDF
    The majority of current state-of-the-art microfluidic devices are fabricated via replica molding of the fluidic channels into PDMS elastomer and then permanently bonding it to a Pyrex surface using plasma oxidation. This method presents a number of problems associated with the bond strengths, versatility, applicability to alternative substrates, and practicality. Thus, the aim of this study was to investigate a more practical method of integrating microfluidics which is superior in terms of bond strengths, reversible, and applicable to a larger variety of substrates, including microfabricated devices. To achieve the above aims, a modular microfluidic system, capable of reversible microfluidic device integration, simultaneous surface patterning and multichannel fluidic perfusion, was built. To demonstrate the system’s potential, the ability to control the distribution of A549 cells inside a microfluidic channel was tested. Then, the system was integrated with a chemically patterned microelectrode array, and used it to culture primary, rat embryo spinal cord neurons in a dynamic fluidic environment. The results of this study showed that this system has the potential to be a cost effective and importantly, a practical means of integrating microfluidics. The system’s robustness and the ability to withstand extensive manual handling have the additional benefit of reducing the workload. It also has the potential to be easily integrated with alternative substrates such as stainless steel or gold without extensive chemical modifications. The results of this study are of significant relevance to research involving neurobiological applications, where primary cell cultures on microelectrode arrays require this type of flexible integrated solution

    Peptide and Peptide-Like Modulators of 20S Proteasome Enzymatic Activity in Cancer Cells

    Get PDF
    The involvement of the ubiquitin–proteasome pathway in the degradation of critical intracellular regulatory proteins suggested a few years ago the potential use of proteasome inhibitors as novel therapeutic agents being applicable in many different disease indications, and in particular for cancer therapy. This article reviews recent salient medicinal chemistry achievements in the design, synthesis, and biological characterization of both synthetic and natural peptide-like proteasome inhibitors, updating recent reviews on this class of agents. As shown herein, different compound classes are capable of modulating the subunit-specific proteolytic activities of the 20S proteasome in ways not previously possible, and one of them, bortezomib, has provided proof-of-concept for this therapeutic approach in cancer clinical settings

    Compensatory density feedback of Oncomelania hupensis populations in two different environmental settings in China

    Get PDF
    BACKGROUND: The most recent strategy for schistosomiasis control in the People's Republic of China aims to reduce the likelihood of environmental contamination of schistosome eggs. Despite considerable progress, it is believed that achievements would be further consolidated with additional intermediate host snail control measures. We provide an empirical framework for discerning the relative contribution of intrinsic effects (density feedback) from other extrinsic drivers of snail population dynamics. METHODS: We set up experiments in two study locations to collect reproduction data of Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum. We applied a set of four population dynamic models that have been widely used to study phenomenological time-series data to examine the properties of demographic density feedback patterns from abundance data. We also contrasted the obtained results with the component feedback of density on survival rate to determine whether adult survival was the principal driver of the demographic feedback observed. RESULTS: Demographic density feedback models (Ricker- and Gompertz-logistic) accounted for <99% of Akaike's information criterion model weight, with the Gompertz ranking highest in all O. hupensis population groups. We found some evidence for stronger compensatory feedback in the O. hupensis population from Sichuan compared to a Jiangsu population. Survival rates revealed strong component feedback, but the log-linear relationships (i.e. Gompertz) had less support in the demographic feedback analysis. CONCLUSIONS: Our findings indicate that integrated schistosomiasis control measures must continue to reduce parasite abundance further because intermediate host snail populations tend to grow exponentially at low densities, especially O. hupensis populations in mountainous regions. We conclude that density feedback in adult survival is the principal component contribution to the demographic phenomenon observed in the population fitness (r)-abundance relationship

    Getting research into policy - Herpes simplex virus type-2 (HSV-2) treatment and HIV infection: international guidelines formulation and the case of Ghana

    Get PDF
    BACKGROUND: Observational epidemiological and biological data indicate clear synergies between Herpes simplex virus type 2 (HSV-2) and HIV, whereby HSV-2 enhances the potential for HIV acquisition or transmission. In 2001, the World Health Organization (WHO) launched a call for research into the possibilities of disrupting this cofactor effect through the use of antiherpetic therapy. A WHO Expert Meeting was convened in 2008 to review the research results. The results of the trials were mostly inconclusive or showed no impact. However, the WHO syndromic management treatment guidelines were modified to include acyclovir as first line therapy to treat genital ulcer disease on the basis of the high prevalence of HSV-2 in most settings, impact and cost-benefit of treatment on ulcer healing and quality of life among patients. METHODS: This paper examines the process through which the evidence related to HIV-HSV-2 interactions influenced policy at the international level and then the mechanism of international to national policy transfer, with Ghana as a case study. To better understand the context within which national policy change occurs, special attention was paid to the relationships between researchers and policy-makers as integral to the process of getting evidence into policy. Data from this study were then collected through interviews conducted with researchers, program managers and policy-makers working in sexual health/STI at the 2008 WHO Expert Meeting in Montreux, Switzerland, and in Accra, Ghana. RESULTS: The major findings of this study indicate that investigations into HSV-2 as a cofactor of HIV generated the political will necessary to reform HSV-2 treatment policy. Playing a pivotal role at both the international level and within the Ghanaian policy context were 'policy networks' formed either formally (WHO) or informally (Ghana) around an issue area. These networks of professionals serve as the primary conduit of information between researchers and policy-makers. Donor influence was cited as the single strongest impetus and impediment to policy change nationally. CONCLUSIONS: Policy networks may serve as the primary driving force of change in both international context and in the case of Ghana. Communication among researchers and policy-makers is critical for uptake of evidence and opportunities may exist to formalize policy networks and engage donors in a productive and ethical way

    Comparative genomics of small RNA regulatory pathway components in vector mosquitoes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Small RNA regulatory pathways (SRRPs) control key aspects of development and anti-viral defense in metazoans. Members of the Argonaute family of catalytic enzymes degrade target RNAs in each of these pathways. SRRPs include the microRNA, small interfering RNA (siRNA) and PIWI-type gene silencing pathways. Mosquitoes generate viral siRNAs when infected with RNA arboviruses. However, in some mosquitoes, arboviruses survive antiviral RNA interference (RNAi) and are transmitted via mosquito bite to a subsequent host. Increased knowledge of these pathways and functional components should increase understanding of the limitations of anti-viral defense in vector mosquitoes. To do this, we compared the genomic structure of SRRP components across three mosquito species and three major small RNA pathways.</p> <p>Results</p> <p>The <it>Ae. aegypti, An. gambiae </it>and <it>Cx. pipiens </it>genomes encode putative orthologs for all major components of the miRNA, siRNA, and piRNA pathways. <it>Ae. aegypti </it>and <it>Cx. pipiens </it>have undergone expansion of Argonaute and PIWI subfamily genes. Phylogenetic analyses were performed for these protein families. In addition, sequence pattern recognition algorithms MEME, MDScan and Weeder were used to identify upstream regulatory motifs for all SRRP components. Statistical analyses confirmed enrichment of species-specific and pathway-specific cis-elements over the rest of the genome.</p> <p>Conclusion</p> <p>Analysis of Argonaute and PIWI subfamily genes suggests that the small regulatory RNA pathways of the major arbovirus vectors, <it>Ae. aegypti and Cx. pipiens</it>, are evolving faster than those of the malaria vector <it>An. gambiae </it>and <it>D. melanogaster</it>. Further, protein and genomic features suggest functional differences between subclasses of PIWI proteins and provide a basis for future analyses. Common UCR elements among SRRP components indicate that 1) key components from the miRNA, siRNA, and piRNA pathways contain NF-kappaB-related and Broad complex transcription factor binding sites, 2) purifying selection has occurred to maintain common pathway-specific elements across mosquito species and 3) species-specific differences in upstream elements suggest that there may be differences in regulatory control among mosquito species. Implications for arbovirus vector competence in mosquitoes are discussed.</p
    corecore