12 research outputs found
Invariant NKT Cell Response to Dengue Virus Infection in Human
BACKGROUND:Dengue viral infection is a global health threat without vaccine or specific treatment. The clinical outcome varies from asymptomatic, mild dengue fever (DF) to severe dengue hemorrhagic fever (DHF). While adaptive immune responses were found to be detrimental in the dengue pathogenesis, the roles of earlier innate events remain largely uninvestigated. Invariant natural killer T (iNKT) cells represent innate-like T cells that could dictate subsequent adaptive response but their role in human dengue virus infection is not known. We hypothesized that iNKT cells play a role in human dengue infection. METHODS:Blood samples from a well-characterized cohort of children with DF, DHF, in comparison to non-dengue febrile illness (OFI) and healthy controls at various time points were studied. iNKT cells activation were analyzed by the expression of CD69 by flow cytometry. Their cytokine production was then analyzed after α-GalCer stimulation. Further, the CD1d expression on monocytes, and CD69 expression on conventional T cells were measured. RESULTS:iNKT cells were activated during acute dengue infection. The level of iNKT cell activation associates with the disease severity. Furthermore, these iNKT cells had altered functional response to subsequent ex vivo stimulation with α-GalCer. Moreover, during acute dengue infection, monocytic CD1d expression was also upregulated and conventional T cells also became activated. CONCLUSION:iNKT cells might play an early and critical role in the pathogenesis of severe dengue viral infection in human. Targeting iNKT cells and CD1d serve as a potential therapeutic strategy for severe dengue infection in the future
Germline bias dictates cross-serotype reactivity in a common dengue-virus-specific CD8(+) T cell response.
Adaptive immune responses protect against infection with dengue virus (DENV), yet cross-reactivity with distinct serotypes can precipitate life-threatening clinical disease. We found that clonotypes expressing the T cell antigen receptor (TCR) β-chain variable region 11 (TRBV11-2) were 'preferentially' activated and mobilized within immunodominant human-leukocyte-antigen-(HLA)-A*11:01-restricted CD8(+) T cell populations specific for variants of the nonstructural protein epitope NS3133 that characterize the serotypes DENV1, DENV3 and DENV4. In contrast, the NS3133-DENV2-specific repertoire was largely devoid of such TCRs. Structural analysis of a representative TRBV11-2(+) TCR demonstrated that cross-serotype reactivity was governed by unique interplay between the variable antigenic determinant and germline-encoded residues in the second β-chain complementarity-determining region (CDR2β). Extensive mutagenesis studies of three distinct TRBV11-2(+) TCRs further confirmed that antigen recognition was dependent on key contacts between the serotype-defined peptide and discrete residues in the CDR2β loop. Collectively, these data reveal an innate-like mode of epitope recognition with potential implications for the outcome of sequential exposure to heterologous DENVs
Complement alternative pathway genetic variation and Dengue infection in the Thai population
Dengue disease is a mosquito-borne infection caused by Dengue virus. Infection may be asymptomatic or variably manifest as mild Dengue fever (DF) to the most severe form, Dengue haemorrhagic fever (DHF). Mechanisms that influence disease severity are not understood. Complement, an integral component of the immune system, is activated during Dengue infection and the degree of activation increases with disease severity. Activation of the complement alternative pathway is influenced by polymorphisms within activation (factor B rs12614/rs641153, C3 rs2230199) and regulatory [complement factor H (CFH) rs800292] proteins, collectively termed a complotype. Here, we tested the hypothesis that the complotype influences disease severity during secondary Dengue infection. In addition to the complotype, we also assessed two other disease-associated CFH polymorphisms (rs1061170, rs3753394) and a structural polymorphism within the CFH protein family. We did not detect any significant association between the examined polymorphisms and Dengue infection severity in the Thai population. However, the minor allele frequencies of the factor B and C3 polymorphisms were less than 10%, so our study was not sufficiently powered to detect an association at these loci. We were also unable to detect a direct interaction between CFH and Dengue NS1 using both recombinant NS1 and DV2-infected culture supernatants. We conclude that the complotype does not influence secondary Dengue infection severity in the Thai population
Cross-Reacting Antibodies Enhance Dengue Virus Infection in Humans
Dengue virus co-circulates as four serotypes and sequential infections with more than one serotype are common. One hypothesis for the increased severity seen in secondary infections is antibody dependent enhancement (ADE) leading to increased replication in Fc-receptor-bearing cells. In this study we have generated a panel of human monoclonal antibodies to dengue virus. Antibodies to the structural precursor-membrane protein (prM) dominate the response. These antibodies are highly cross-reactive among the dengue virus serotypes and, even at high concentrations, do not neutralise infection but potently promote ADE. We propose that the partial cleavage of prM from the viral surface reduces the density of antigen available for viral neutralisation, leaving dengue viruses susceptible to ADE by anti-prM, a finding which has implications for future vaccine design
An in-depth analysis of original antigenic sin in dengue virus infection
The evolution of dengue viruses has resulted in four antigenically similar yet distinct serotypes. Infection with one serotype likely elicits lifelong immunity to that serotype, but generally not against the other three. Secondary or sequential infections are common, as multiple viral serotypes frequently cocirculate. Dengue infection, although frequently mild, can lead to dengue hemorrhagic fever (DHF) which can be life threatening. DHF is more common in secondary dengue infections, implying a role for the adaptive immune response in the disease. There is currently much effort toward the design and implementation of a dengue vaccine but these efforts are made more difficult by the challenge of inducing durable neutralizing immunity to all four viruses. Domain 3 of the dengue virus envelope protein (ED3) has been suggested as one such candidate because it contains neutralizing epitopes and it was originally thought that relatively few cross-reactive antibodies are directed to this domain. In this study, we performed a detailed analysis of the anti-ED3 response in a cohort of patients suffering either primary or secondary dengue infections. The results show dramatic evidence of original antigenic sin in secondary infections both in terms of binding and enhancement activity. This has important implications for dengue vaccine design because heterologous boosting is likely to maintain the immunological footprint of the first vaccination. On the basis of these findings, we propose a simple in vitro enzyme-linked immunosorbent assay (ELISA) to diagnose the original dengue infection in secondary dengue cases.Claire M. Midgley, Martha Bajwa-Joseph, Sirijitt Vasanawathana, Wannee Limpitikul, Bridget Wills, Aleksandra Flanagan, Emily Waiyaiya, Hai Bac Tran, Alison E. Cowper, Pojchong Chotiyarnwon, Jonathan M. Grimes, Sutee Yoksan, Prida Malasit, Cameron P. Simmons, Juthathip Mongkolsapaya, and Gavin R. Screato
An In-Depth Analysis of Original Antigenic Sin in Dengue Virus Infection▿
The evolution of dengue viruses has resulted in four antigenically similar yet distinct serotypes. Infection with one serotype likely elicits lifelong immunity to that serotype, but generally not against the other three. Secondary or sequential infections are common, as multiple viral serotypes frequently cocirculate. Dengue infection, although frequently mild, can lead to dengue hemorrhagic fever (DHF) which can be life threatening. DHF is more common in secondary dengue infections, implying a role for the adaptive immune response in the disease. There is currently much effort toward the design and implementation of a dengue vaccine but these efforts are made more difficult by the challenge of inducing durable neutralizing immunity to all four viruses. Domain 3 of the dengue virus envelope protein (ED3) has been suggested as one such candidate because it contains neutralizing epitopes and it was originally thought that relatively few cross-reactive antibodies are directed to this domain. In this study, we performed a detailed analysis of the anti-ED3 response in a cohort of patients suffering either primary or secondary dengue infections. The results show dramatic evidence of original antigenic sin in secondary infections both in terms of binding and enhancement activity. This has important implications for dengue vaccine design because heterologous boosting is likely to maintain the immunological footprint of the first vaccination. On the basis of these findings, we propose a simple in vitro enzyme-linked immunosorbent assay (ELISA) to diagnose the original dengue infection in secondary dengue cases