692 research outputs found

    Galaxy Galaxy Lensing as a Probe of Galaxy Dark Matter Halos

    Full text link
    Gravitational lensing has now become a popular tool to measure the mass distribution of structures in the Universe on various scales. Here we focus on the study of galaxy's scale dark matter halos with galaxy-galaxy lensing techniques: observing the shapes of distant background galaxies which have been lensed by foreground galaxies allows us to map the mass distribution of the foreground galaxies. The lensing effect is small compared to the intrinsic ellipticity distribution of galaxies, thus a statistical approach is needed to derive some constraints on an average lens population. An advantage of this method is that it provides a probe of the gravitational potential of the halos of galaxies out to very large radii, where few classical methods are viable, since dynamical and hydrodynamical tracers of the potential cannot be found at this radii. We will begin by reviewing the detections of galaxy-galaxy lensing obtained so far. Next we will present a maximum likelihood analysis of simulated data we performed to evaluate the accuracy and robustness of constraints that can be obtained on galaxy halo properties. Then we will apply this method to study the properties of galaxies which stand in massive cluster lenses at z~0.2. The main result of this work is to find dark matter halos of cluster galaxies to be significantly more compact compared to dark matter halos around field galaxies of equivalent luminosity, in agreement with early galaxy-galaxy lensing studies and with theoretical expectations, in particular with the tidal stripping scenario. We thus provide a strong confirmation of tidal truncation from a homogeneous sample of galaxy clusters. Moreover, it is the first time that cluster galaxies are probed successfully using galaxy-galaxy lensing techniques from ground based data.Comment: 8 pages, 5 figures, to appear in Moriond Proceedings, From Dark Halos to Ligh

    Gravitational lensing and dynamics in SL2S\,J02140-0535: Probing the mass out to large radius

    Full text link
    We aim to probe the mass of SL2S\,J02140-0535, a galaxy group at zz = 0.44 from the Strong Lensing Legacy Survey (SL2S). We combine strong lensing modeling and dynamical constraints. The strong lensing analysis is based on multi-band HST/ACS observations exhibiting strong lensing features that we have followed-up spectroscopically with VLT/FORS2. To constrain the scale radius of an NFW mass profile that cannot be constrained by strong lensing, we propose a new method by taking advantage of the large-scale dynamical information provided by VLT/FORS2 and KECK/LRIS spectroscopy of group members. In constrast to other authors, we show that the observed lensing features in SL2S\,J02140-0535 belong to different background sources: one at zz = 1.7 ±\pm 0.1 produces three images, while the other at zz = 1.023 ±\pm 0.001 has only a single image. Our unimodal NFW mass model reproduces these images very well. It is characterized by a concentration parameter c200c_{200} = 6.0 ±\pm 0.6, which is slightly greater than the value expected from Λ\LambdaCDM simulations for a mass of M200_{200} ≈\approx 1 ×\times 1014^{14} M_{\sun}. The spectroscopic analysis of group members also reveals a unimodal structure that exhibits no evidence of merging. We compare our dynamic mass estimate with an independent weak-lensing based mass estimate finding that both are consistent. Our combined lensing and dynamical analysis of SL2S\,J02140-0535 demonstrates the importance of spectroscopic information in reliably identifying the lensing features. Our findings argue that the system is a relaxed, massive galaxy group where mass is traced by light. This work shows a potentially useful method for constraining large-scale properties inaccessible to strong lensing, such as the scale radius of the NFW profile.Comment: Accepted for publication in A&

    Numerical implementation of isolated horizon boundary conditions

    Get PDF
    We study the numerical implementation of a set of boundary conditions derived from the isolated horizon formalism, and which characterize a black hole whose horizon is in quasiequilibrium. More precisely, we enforce these geometrical prescriptions as inner boundary conditions on an excised sphere, in the numerical resolution of the conformal thin sandwich equations. As main results, we first establish the consistency of including in the set of boundary conditions a constant surface gravity prescription, interpretable as a lapse boundary condition, and second we assess how the prescriptions presented recently by Dain et al. for guaranteeing the well-posedness of the conformal transverse traceless equations with quasiequilibrium horizon conditions extend to the conformal thin sandwich elliptic system. As a consequence of the latter analysis, we discuss the freedom of prescribing the expansion associated with the ingoing null normal at the horizon

    The Bullet cluster at its best: weighing stars, gas and dark matter

    Full text link
    We present a new strong lensing mass reconstruction of the Bullet cluster (1E 0657-56) at z=0.296, based on WFC3 and ACS HST imaging and VLT/FORS2 spectroscopy. The strong lensing constraints underwent substantial revision compared to previously published analysis, there are now 14 (six new and eight previously known) multiply-imaged systems, of which three have spectroscopically confirmed redshifts (including one newly measured from this work). The reconstructed mass distribution explicitly included the combination of three mass components: i) the intra-cluster gas mass derived from X-ray observation, ii) the cluster galaxies modeled by their fundamental plane scaling relations and iii) dark matter. The model that includes the intra-cluster gas is the one with the best Bayesian evidence. This model has a total RMS value of 0.158" between the predicted and measured image positions for the 14 multiple images considered. The proximity of the total RMS to resolution of HST/WFC3 and ACS (0.07-0.15" FWHM) demonstrates the excellent precision of our mass model. The derived mass model confirms the spatial offset between the X-ray gas and dark matter peaks. The fraction of the galaxy halos mass to total mass is found to be f_s=11+/-5% for a total mass of 2.5+/-0.1 x 10^14 solar mass within a 250 kpc radial aperture.Comment: Accepted by A&A 15 pages, 12 figure

    Compton telescope with coded aperture mask: Imaging with the INTEGRAL/IBIS Compton mode

    Get PDF
    Compton telescopes provide a good sensitivity over a wide field of view in the difficult energy range running from a few hundred keV to several MeV. Their angular resolution is, however, poor and strongly energy dependent. We present a novel experimental design associating a coded mask and a Compton detection unit to overcome these pitfalls. It maintains the Compton performance while improving the angular resolution by at least an order of magnitude in the field of view subtended by the mask. This improvement is obtained only at the expense of the efficiency that is reduced by a factor of two. In addition, the background corrections benefit from the coded mask technique, i.e. a simultaneous measurement of the source and background. This design is implemented and tested using the IBIS telescope on board the INTEGRAL satellite to construct images with a 12' resolution over a 29 degrees x 29 degrees field of view in the energy range from 200 keV to a few MeV. The details of the analysis method and the resulting telescope performance, particularly in terms of sensitivity, are presented

    Probing the Slope of Cluster Mass Profile with Gravitational Einstein Rings: Application to Abell 1689

    Get PDF
    The strong lensing modelling of gravitational ``rings'' formed around massive galaxies is sensitive to the amplitude of the external shear and convergence produced by nearby mass condensations. In current wide field surveys, it is now possible to find out a large number of rings, typically 10 gravitational rings per square degree. We propose here, to systematically study gravitational rings around galaxy clusters to probe the cluster mass profile beyond the cluster strong lensing regions. For cluster of galaxies with multiple arc systems, we show that rings found at various distances from the cluster centre can improve the modelling by constraining the slope of the cluster mass profile. We outline the principle of the method with simple numerical simulations and we apply it to 3 rings discovered recently in Abell~1689. In particular, the lens modelling of the 3 rings confirms that the cluster is bimodal, and favours a slope of the mass profile steeper than isothermal at a cluster radius \sim 300 \kpc. These results are compared with previous lens modelling of Abell~1689 including weak lensing analysis. Because of the difficulty arising from the complex mass distribution in Abell~1689, we argue that the ring method will be better implemented on simpler and relaxed clusters.Comment: Accepted for publication in MNRAS. Substantial modification after referee's repor

    A comparison of the strong lensing properties of the Sersic and the NFW profiles

    Full text link
    We investigate the strong lensing properties of the Sersic profile as an alternative to the NFW profile, focusing on applications to lens modelling of clusters. Given an underlying Sersic dark matter profile, we study whether an NFW profile can provide an acceptable fit to strong lensing constraints in the form of single or multiple measured Einstein radii. We conclude that although an NFW profile that fits the lensing constraints can be found in many cases, the derived parameters may be biased. In particular, we find that for n~2, which corresponds to massive clusters, the mass at r_200 of the best fit NFW is overestimated (by a factor of ~2) and the concentration is very low (c~2). The differences are important enough to warrant the inclusion of Sersic profile for future analysis of strong lensing clusters.Comment: 19 pages (single column format), 11 figures. Accepted for publication by JCA

    Strong lensing, weak lensing, and dynamics in SL2S J02140-0535

    Get PDF
    International audienceWe combine strong lensing modeling and dynamical constraints in order to probe the mass of SL2S J02140-0535, a galaxy group at z = 0.44 from the Strong Lensing Legacy Survey (SL2S) which has uncovered a new population of group-scale strong lenses. The strong lensing analysis is based on multi-band HST/ACS observations which display strong lensing features that we have followed up spectroscopically with VLT/FORS2. To constrain the scale radius of an NFW mass profile, we propose a new method taking advantage of the large scale dynamical information provided by VLT/FORS2 and KECK/LRIS spectroscopy of group members. This work shows a potentially useful method for constraining large-scale properties inaccessible to strong lensing, such as the scale radius of the NFW profile
    • 

    corecore