834 research outputs found
Galaxy Galaxy Lensing as a Probe of Galaxy Dark Matter Halos
Gravitational lensing has now become a popular tool to measure the mass
distribution of structures in the Universe on various scales. Here we focus on
the study of galaxy's scale dark matter halos with galaxy-galaxy lensing
techniques: observing the shapes of distant background galaxies which have been
lensed by foreground galaxies allows us to map the mass distribution of the
foreground galaxies. The lensing effect is small compared to the intrinsic
ellipticity distribution of galaxies, thus a statistical approach is needed to
derive some constraints on an average lens population. An advantage of this
method is that it provides a probe of the gravitational potential of the halos
of galaxies out to very large radii, where few classical methods are viable,
since dynamical and hydrodynamical tracers of the potential cannot be found at
this radii. We will begin by reviewing the detections of galaxy-galaxy lensing
obtained so far. Next we will present a maximum likelihood analysis of
simulated data we performed to evaluate the accuracy and robustness of
constraints that can be obtained on galaxy halo properties. Then we will apply
this method to study the properties of galaxies which stand in massive cluster
lenses at z~0.2. The main result of this work is to find dark matter halos of
cluster galaxies to be significantly more compact compared to dark matter halos
around field galaxies of equivalent luminosity, in agreement with early
galaxy-galaxy lensing studies and with theoretical expectations, in particular
with the tidal stripping scenario. We thus provide a strong confirmation of
tidal truncation from a homogeneous sample of galaxy clusters. Moreover, it is
the first time that cluster galaxies are probed successfully using
galaxy-galaxy lensing techniques from ground based data.Comment: 8 pages, 5 figures, to appear in Moriond Proceedings, From Dark Halos
to Ligh
Gravitational lensing and dynamics in SL2S\,J02140-0535: Probing the mass out to large radius
We aim to probe the mass of SL2S\,J02140-0535, a galaxy group at = 0.44
from the Strong Lensing Legacy Survey (SL2S). We combine strong lensing
modeling and dynamical constraints. The strong lensing analysis is based on
multi-band HST/ACS observations exhibiting strong lensing features that we have
followed-up spectroscopically with VLT/FORS2. To constrain the scale radius of
an NFW mass profile that cannot be constrained by strong lensing, we propose a
new method by taking advantage of the large-scale dynamical information
provided by VLT/FORS2 and KECK/LRIS spectroscopy of group members. In constrast
to other authors, we show that the observed lensing features in
SL2S\,J02140-0535 belong to different background sources: one at = 1.7
0.1 produces three images, while the other at = 1.023 0.001 has
only a single image. Our unimodal NFW mass model reproduces these images very
well. It is characterized by a concentration parameter = 6.0
0.6, which is slightly greater than the value expected from CDM
simulations for a mass of M 1 10 M_{\sun}.
The spectroscopic analysis of group members also reveals a unimodal structure
that exhibits no evidence of merging. We compare our dynamic mass estimate with
an independent weak-lensing based mass estimate finding that both are
consistent. Our combined lensing and dynamical analysis of SL2S\,J02140-0535
demonstrates the importance of spectroscopic information in reliably
identifying the lensing features. Our findings argue that the system is a
relaxed, massive galaxy group where mass is traced by light. This work shows a
potentially useful method for constraining large-scale properties inaccessible
to strong lensing, such as the scale radius of the NFW profile.Comment: Accepted for publication in A&
The Bullet cluster at its best: weighing stars, gas and dark matter
We present a new strong lensing mass reconstruction of the Bullet cluster (1E
0657-56) at z=0.296, based on WFC3 and ACS HST imaging and VLT/FORS2
spectroscopy. The strong lensing constraints underwent substantial revision
compared to previously published analysis, there are now 14 (six new and eight
previously known) multiply-imaged systems, of which three have
spectroscopically confirmed redshifts (including one newly measured from this
work). The reconstructed mass distribution explicitly included the combination
of three mass components: i) the intra-cluster gas mass derived from X-ray
observation, ii) the cluster galaxies modeled by their fundamental plane
scaling relations and iii) dark matter. The model that includes the
intra-cluster gas is the one with the best Bayesian evidence. This model has a
total RMS value of 0.158" between the predicted and measured image positions
for the 14 multiple images considered. The proximity of the total RMS to
resolution of HST/WFC3 and ACS (0.07-0.15" FWHM) demonstrates the excellent
precision of our mass model. The derived mass model confirms the spatial offset
between the X-ray gas and dark matter peaks. The fraction of the galaxy halos
mass to total mass is found to be f_s=11+/-5% for a total mass of 2.5+/-0.1 x
10^14 solar mass within a 250 kpc radial aperture.Comment: Accepted by A&A 15 pages, 12 figure
A comparison of the strong lensing properties of the Sersic and the NFW profiles
We investigate the strong lensing properties of the Sersic profile as an
alternative to the NFW profile, focusing on applications to lens modelling of
clusters. Given an underlying Sersic dark matter profile, we study whether an
NFW profile can provide an acceptable fit to strong lensing constraints in the
form of single or multiple measured Einstein radii. We conclude that although
an NFW profile that fits the lensing constraints can be found in many cases,
the derived parameters may be biased. In particular, we find that for n~2,
which corresponds to massive clusters, the mass at r_200 of the best fit NFW is
overestimated (by a factor of ~2) and the concentration is very low (c~2). The
differences are important enough to warrant the inclusion of Sersic profile for
future analysis of strong lensing clusters.Comment: 19 pages (single column format), 11 figures. Accepted for publication
by JCA
Compton telescope with coded aperture mask: Imaging with the INTEGRAL/IBIS Compton mode
Compton telescopes provide a good sensitivity over a wide field of view in
the difficult energy range running from a few hundred keV to several MeV. Their
angular resolution is, however, poor and strongly energy dependent. We present
a novel experimental design associating a coded mask and a Compton detection
unit to overcome these pitfalls. It maintains the Compton performance while
improving the angular resolution by at least an order of magnitude in the field
of view subtended by the mask. This improvement is obtained only at the expense
of the efficiency that is reduced by a factor of two. In addition, the
background corrections benefit from the coded mask technique, i.e. a
simultaneous measurement of the source and background. This design is
implemented and tested using the IBIS telescope on board the INTEGRAL satellite
to construct images with a 12' resolution over a 29 degrees x 29 degrees field
of view in the energy range from 200 keV to a few MeV. The details of the
analysis method and the resulting telescope performance, particularly in terms
of sensitivity, are presented
Hard X-ray polarimetry with Caliste, a high performance CdTe based imaging spectrometer
Since the initial exploration of soft gamma-ray sky in the 60's, high-energy
celestial sources have been mainly characterized through imaging, spectroscopy
and timing analysis. Despite tremendous progress in the field, the radiation
mechanisms at work in sources such as neutrons stars and black holes are still
unclear. The polarization state of the radiation is an observational parameter
which brings key additional information about the physical process. This is why
most of the projects for the next generation of space missions covering the
tens of keV to the MeV region require a polarization measurement capability. A
key element enabling this capability is a detector system allowing the
identification and characterization of Compton interactions as they are the
main process at play. The hard X-ray imaging spectrometer module, developed in
CEA with the generic name of Caliste module, is such a detector. In this paper,
we present experimental results for two types of Caliste-256 modules, one based
on a CdTe crystal, the other one on a CdZnTe crystal, which have been exposed
to linearly polarized beams at the European Synchrotron Radiation Facility.
These results, obtained at 200-300 keV, demonstrate their capability to give an
accurate determination of the polarization parameters (polarization angle and
fraction) of the incoming beam. Applying a selection to our data set,
equivalent to select 90 degrees Compton scattered interactions in the detector
plane, we find a modulation factor Q of 0.78. The polarization angle and
fraction are derived with accuracies of approximately 1 degree and 5%. The
modulation factor remains larger than 0.4 when essentially no selection is made
at all on the data. These results prove that the Caliste-256 modules have
performances allowing them to be excellent candidates as detectors with
polarimetric capabilities, in particular for future space missions.Comment: 17 pages, 14 figures, 2 tables in Experimental Astronomy, 201
Non-uniqueness in conformal formulations of the Einstein constraints
Standard methods in non-linear analysis are used to show that there exists a
parabolic branching of solutions of the Lichnerowicz-York equation with an
unscaled source. We also apply these methods to the extended conformal thin
sandwich formulation and show that if the linearised system develops a kernel
solution for sufficiently large initial data then we obtain parabolic solution
curves for the conformal factor, lapse and shift identical to those found
numerically by Pfeiffer and York. The implications of these results for
constrained evolutions are discussed.Comment: Arguments clarified and typos corrected. Matches published versio
Probing the Slope of Cluster Mass Profile with Gravitational Einstein Rings: Application to Abell 1689
The strong lensing modelling of gravitational ``rings'' formed around massive
galaxies is sensitive to the amplitude of the external shear and convergence
produced by nearby mass condensations. In current wide field surveys, it is now
possible to find out a large number of rings, typically 10 gravitational rings
per square degree. We propose here, to systematically study gravitational rings
around galaxy clusters to probe the cluster mass profile beyond the cluster
strong lensing regions. For cluster of galaxies with multiple arc systems, we
show that rings found at various distances from the cluster centre can improve
the modelling by constraining the slope of the cluster mass profile. We outline
the principle of the method with simple numerical simulations and we apply it
to 3 rings discovered recently in Abell~1689. In particular, the lens modelling
of the 3 rings confirms that the cluster is bimodal, and favours a slope of the
mass profile steeper than isothermal at a cluster radius \sim 300 \kpc. These
results are compared with previous lens modelling of Abell~1689 including weak
lensing analysis. Because of the difficulty arising from the complex mass
distribution in Abell~1689, we argue that the ring method will be better
implemented on simpler and relaxed clusters.Comment: Accepted for publication in MNRAS. Substantial modification after
referee's repor
Dark matter-baryons separation at the lowest mass scale: the Bullet Group
We report on the X-ray observation of a strong lensing selected group, SL2S
J08544-0121, with a total mass of
which revealed a separation of kpc between the X-ray emitting
collisional gas and the collisionless galaxies and dark matter (DM), traced by
strong lensing. This source allows to put an order of magnitude estimate to the
upper limit to the interaction cross section of DM of 10 cm g. It is
the lowest mass object found to date showing a DM-baryons separation and it
reveals that the detection of bullet-like objects is not rare and confined to
mergers of massive objects opening the possibility of a statistical detection
of DM-baryons separation with future surveys.Comment: 5 pages, 3 figures. Accepted for publication in MNRAS Letters. Typos
correcte
- …
