84 research outputs found

    Proteomic analysis of the major envelope and nucleocapsid proteins of white spot syndrome virus

    Get PDF
    White spot syndrome virus (WSSV) virions were purified from the tissues of infected Procambarus clarkii (crayfish) isolates. Pure WSSV preparations were subjected to Triton X-100 treatment to separate into the envelope and nucleocapsid fractions, which were subsequently separated by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The major envelope and nucleocapsid proteins were identified by either matrix-assisted laser desorption ionization-time of flight mass spectrometry or defined antibody. A total of 30 structural proteins of WSSV were identified in this study; 22 of these were detected in the envelope fraction, 7 in the nucleocapsid fraction, and 1 in both the envelope and the nucleocapsid fractions. With the aid of specific antibodies, the localizations of eight proteins were further studied. The analysis of posttranslational modifications revealed that none of the WSSV structural proteins was glycosylated and that VP28 and VP19 were threonine phosphorylated. In addition, far-Western and coimmunoprecipitation experiments showed that VP28 interacted with both VP26 and VP24. In summary, the data obtained in this study should provide an important reference for future molecular studies of WSSV morphogenesis

    Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems

    Full text link
    Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Science). Being an emerging research paradigm, AI4Science is unique in that it is an enormous and highly interdisciplinary area. Thus, a unified and technical treatment of this field is needed yet challenging. This work aims to provide a technically thorough account of a subarea of AI4Science; namely, AI for quantum, atomistic, and continuum systems. These areas aim at understanding the physical world from the subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales and form an important subarea of AI4Science. A unique advantage of focusing on these areas is that they largely share a common set of challenges, thereby allowing a unified and foundational treatment. A key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods. We provide an in-depth yet intuitive account of techniques to achieve equivariance to symmetry transformations. We also discuss other common technical challenges, including explainability, out-of-distribution generalization, knowledge transfer with foundation and large language models, and uncertainty quantification. To facilitate learning and education, we provide categorized lists of resources that we found to be useful. We strive to be thorough and unified and hope this initial effort may trigger more community interests and efforts to further advance AI4Science

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Proteomic Analysis of the Major Envelope and Nucleocapsid Proteins of White Spot Syndrome Virus

    No full text
    White spot syndrome virus (WSSV) virions were purified from the tissues of infected Procambarus clarkii (crayfish) isolates. Pure WSSV preparations were subjected to Triton X-100 treatment to separate into the envelope and nucleocapsid fractions, which were subsequently separated by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The major envelope and nucleocapsid proteins were identified by either matrix-assisted laser desorption ionization-time of flight mass spectrometry or defined antibody. A total of 30 structural proteins of WSSV were identified in this study; 22 of these were detected in the envelope fraction, 7 in the nucleocapsid fraction, and 1 in both the envelope and the nucleocapsid fractions. With the aid of specific antibodies, the localizations of eight proteins were further studied. The analysis of posttranslational modifications revealed that none of the WSSV structural proteins was glycosylated and that VP28 and VP19 were threonine phosphorylated. In addition, far-Western and coimmunoprecipitation experiments showed that VP28 interacted with both VP26 and VP24. In summary, the data obtained in this study should provide an important reference for future molecular studies of WSSV morphogenesis

    Numerical Version of Self-Consistent Scheme for Heterogeneous Materials

    No full text
    The self-consistent scheme (Budiansky, 1965) is one of the analytical methods to predict the effective properties of heterogeneous material. However, it has been noticed that this scheme cannot take the micro-structural information into the estimation. The full scale numerical simulation considering elaborately the micro-morphological characteristics, under certain conditions, needs too much computational resources (memory and time). A numerical version of self-consistent scheme based on finite element analysis is proposed to overcome the above drawbacks by combining the characteristics of numerical simulation and self-consistent scheme. As a demonstration, such scheme is applied to estimate the effective mechanical properties of bi-continuous composite in which all the constituent phases are on the equal status. The prediction is in good agreement with the full scale numerical simulation while the requirement on computational resource is reduced dramatically
    corecore