272 research outputs found

    High resolution spectroscopic analysis of seven giants in the bulge globular cluster NGC 6723

    Get PDF
    Globular clusters associated with the Galactic bulge are important tracers of stellar populations in the inner Galaxy. High resolution analysis of stars in these clusters allows us to characterize them in terms of kinematics, metallicity, and individual abundances, and to compare these fingerprints with those characterizing field populations. We present iron and element ratios for seven red giant stars in the globular cluster NGC~6723, based on high resolution spectroscopy. High resolution spectra (R48 000R\sim48~000) of seven K giants belonging to NGC 6723 were obtained with the FEROS spectrograph at the MPG/ESO 2.2m telescope. Photospheric parameters were derived from 130\sim130 FeI and FeII transitions. Abundance ratios were obtained from line-to-line spectrum synthesis calculations on clean selected features. An intermediate metallicity of [Fe/H]=0.98±0.08=-0.98\pm0.08 dex and a heliocentric radial velocity of vhel=96.6±1.3 kms1v_{hel}=-96.6\pm1.3~km s^{-1} were found for NGC 6723. Alpha-element abundances present enhancements of [O/Fe]=0.29±0.18[O/Fe]=0.29\pm0.18 dex, [Mg/Fe]=0.23±0.10[Mg/Fe]=0.23\pm0.10 dex, [Si/Fe]=0.36±0.05[Si/Fe]=0.36\pm0.05 dex, and [Ca/Fe]=0.30±0.07[Ca/Fe]=0.30\pm0.07 dex. Similar overabundance is found for the iron-peak Ti with [Ti/Fe]=0.24±0.09[Ti/Fe]=0.24\pm0.09 dex. Odd-Z elements Na and Al present abundances of [Na/Fe]=0.00±0.21[Na/Fe]=0.00\pm0.21 dex and [Al/Fe]=0.31±0.21[Al/Fe]=0.31\pm0.21 dex, respectively. Finally, the s-element Ba is also enhanced by [Ba/Fe]=0.22±0.21[Ba/Fe]=0.22\pm0.21 dex. The enhancement levels of NGC 6723 are comparable to those of other metal-intermediate bulge globular clusters. In turn, these enhancement levels are compatible with the abundance profiles displayed by bulge field stars at that metallicity. This hints at a possible similar chemical evolution with globular clusters and the metal-poor of the bulge going through an early prompt chemical enrichment

    VST processing facility: first astronomical applications

    Full text link
    VST--Tube is a new software package designed to process optical astronomical images. It is an automated pipeline to go from the raw exposures to fully calibrated co-added images, and to extract catalogs with aperture and PSF photometry. A set of tools allow the data administration and the quality check of the intermediate and final products. VST-Tube comes with a Graphical User Interface to facilitate the interaction between data and user. We outline here the VST--Tube architecture and show some applications enlightening some of the characteristics of the pipeline.Comment: Presented to the 54th Congress SAIt, 4-7 May 2010, Naples, Ital

    VEGAS: a VST Early-type GAlaxy Survey. IV. NGC 1533, IC 2038 and IC 2039: an interacting triplet in the Dorado group

    Get PDF
    This paper focuses on NGC 1533 and the pair IC 2038 and IC 2039 in Dorado a nearby, clumpy, still un-virialized group. We obtained their surface photometry from deep OmegaCAM@ESO-VST images in g and r bands. For NGC 1533, we map the surface brightness down to μg30.11\mu_g \simeq 30.11 mag/arcsec2^{2} and μr28.87\mu_r \simeq 28.87 mag/arcsec2^{2} and out to about 4Re4R_e. At such faint levels the structure of NGC 1533 appear amazingly disturbed with clear structural asymmetry between inner and outer isophotes in the North-East direction. We detect new spiral arm-like tails in the outskirts, which might likely be the signature of a past interaction/merging event. Similarly, IC 2038 and IC 2039 show tails and distortions indicative of their ongoing interaction. Taking advantages of deep images, we are able to detect the optical counterpart to the HI gas. The analysis of the new deep data suggests that NGC 1533 had a complex history made of several interactions with low-mass satellites that generated the star-forming spiral-like structure in the inner regions and are shaping the stellar envelope. In addition, the VST observations show that also the two less luminous galaxies, IC 2038 and IC 2039, are probably interacting each-other and, in the past, IC 2038 could have also interacted with NGC 1533, which stripped away gas and stars from its outskirts. The new picture emerging from this study is of an interacting triplet, where the brightest galaxy NGC 1533 has ongoing mass assembly in the outskirts.Comment: Accepted for publication in The Astronomical Journal. High-resolution version of paper is available at the following link: https://www.dropbox.com/preview/VEGAS_IV.pdf?role=persona

    Cosmic dance in the Shapley Concentration Core - I. A study of the radio emission of the BCGs and tailed radio galaxies

    Get PDF
    The Shapley Concentration (z0.048z\approx0.048) covers several degrees in the Southern Hemisphere, and includes galaxy clusters in advanced evolutionary stage, groups of clusters in the early stages of merger, fairly massive clusters with ongoing accretion activity, and smaller groups located in filaments in the regions between the main clusters. With the goal to investigate the role of cluster mergers and accretion on the radio galaxy population, we performed a multi-wavelength study of the BCGs and of the galaxies showing extended radio emission in the cluster complexes of Abell 3528 and Abell 3558. Our study is based on a sample of 12 galaxies. We observed the clusters with the GMRT at 235, 325 and 610 MHz, and with the VLA at 8.46 GHz. We complemented our study with the TGSS at 150 MHz, the SUMSS at 843 MHz and ATCA at 1380, 1400, 2380, and 4790 MHz data. Optical imaging with ESO-VST and mid-IR coverage with WISE are also available for the host galaxies. We found deep differences in the properties of the radio emission of the BCGs in the two cluster complexes. The BCGs in the A3528 complex and in A3556, which are relaxed cool-core objects, are powerful active radio galaxies. They also present hints of restarted activity. On the contrary, the BCGs in A3558 and A3562, which are well known merging systems, are very faint, or quiet, in the radio band. The optical and IR properties of the galaxies are fairly similar in the two complexes, showing all passive red galaxies. Our study shows remarkable differences in the radio properties of the BGCs, which we relate to the different dynamical state of the host cluster. On the contrary, the lack of changes between such different environments in the optical band suggests that the dynamical state of galaxy clusters does not affect the optical counterparts of the radio galaxies, at least over the life-time of the radio emission.Comment: 24 pages, 11 figures, accepted for publication in Astronomy & Astrophysic

    Shapley Supercluster Survey: Construction of the photometric catalogues and i-band data release

    Get PDF
    The Shapley Supercluster Survey is a multi-wavelength survey covering an area of ∼23 deg² (∼260 Mpc² at z = 0.048) around the supercluster core, including nine Abell and two poor clusters, having redshifts in the range 0.045–0.050. The survey aims to investigate the role of the cluster-scale mass assembly on the evolution of galaxies, mapping the effects of the environment from the cores of the clusters to their outskirts and along the filaments. The optical (ugri) imaging acquired with OmegaCAM on the VLT Survey Telescope is essential to achieve the project goals providing accurate multi-band photometry for the galaxy population down to m∗ + 6. We describe the methodology adopted to construct the optical catalogues and to separate extended and point-like sources. The catalogues reach average 5σ limiting magnitudes within a 3 arcsec diameter aperture of ugri = [24.4,24.6,24.1,23.3] and are 93 per cent complete down to ugri = [23.8,23.8,23.5,22.0] mag, corresponding to ∼m∗ r + 8.5. The data are highly uniform in terms of observing conditions and all acquired with seeing less than 1.1 arcsec full width at half-maximum. The median seeing in r band is 0.6 arcsec, corresponding to 0.56 kpc h⁻¹ 70 at z = 0.048. While the observations in the u, g and r bands are still ongoing, the i-band observations have been completed, and we present the i-band catalogue over the whole survey area. The latter is released and it will be regularly updated, through the use of the Virtual Observatory tools. This includes 734 319 sources down to i = 22.0 mag and it is the first optical homogeneous catalogue at such a depth, covering the central region of the Shapley supercluster

    Oxygen supersaturation mitigates the impact of the regime of contaminated sediment reworking on sea urchin fertilization process

    Get PDF
    Dismissed industrial plants with chronic environmental contamination globally affect all levels of biological organization in concert with other natural and anthropogenic perturbations. Assessing the impact of such perturbations and finding effective ways to mitigate them have clear ecological and societal implications. Through indoor manipulative experiments, we assessed here the effects of the temporal regime of reworking of contaminated sediment from the Bagnoli-Coroglio brownfield (Tyrrhenian Sea, Italy) on the fertilization process in Paracentrotus lividus. Adult sea urchins were kept for one month in tanks containing contaminated sediment that was re-suspended according to two temporal patterns of water turbulence differing in the time intervals between consecutive events of agitation (mimicking the storms naturally occurring in the study area) in seawater with natural vs. supersaturated oxygenation levels. At the end of the treatment, gametes were collected and used to test the hypothesis that the regime of contaminated sediment reworking negatively, but reversibly, affects morphological and physiological traits of the fertilized eggs. We found that aggregated events of sediment re-suspension had profound negative effects on gamete interactions and Ca2+ signaling at fertilization. The same experimental condition also inflicted marked ultrastructural changes in eggs. Importantly, however, such detrimental effects were inhibited by increased oxygenation. By contrast, the regime of sediment re-working with a longer interval between consecutive turbulent events had only marginal effects. Thus, the current and predicted changes of climate-related disturbance appear to modulate the biological effects of chronic contamination in post-industrial areas, suggesting that environmental rehabilitation via restoration of habitat-forming primary producers such as seagrasses or algal canopies could alleviate the pollutants’ effects on resident biota

    Shapley Supercluster Survey (ShaSS): Galaxy Evolution from Filaments to Cluster Cores

    Get PDF
    We present an overview of a multi-wavelength survey of the Shapley supercluster (SSC; z~0.05) covering a contiguous area of 260 h^-2_70 Mpc^2 including the supercluster core. The project main aim is to quantify the influence of cluster-scale mass assembly on galaxy evolution in one of the most massive structures in the local Universe. The Shapley supercluster survey (ShaSS) includes nine Abell clusters (A3552, A3554, A3556, A3558, A3559, A3560, A3562, AS0724, AS0726) and two poor clusters (SC1327- 312, SC1329-313) showing evidence of cluster-cluster interactions. Optical (ugri) and near-infrared (K) imaging acquired with VST and VISTA allow us to study the galaxy population down to m*+6 at the supercluster redshift. A dedicated spectroscopic survey with AAOmega on the Anglo-Australian Telescope provides a magnitude-limited sample of supercluster members with 80% completeness at ~m*+3. We derive the galaxy density across the whole area, demonstrating that all structures within this area are embedded in a single network of clusters, groups and filaments. The stellar mass density in the core of the SSC is always higher than 9E09 M_sun Mpc^-3, which is ~40x the cosmic stellar mass density for galaxies in the local Universe. We find a new filamentary structure (~7 Mpc long in projection) connecting the SSC core to the cluster A3559, as well as previously unidentified density peaks. We perform a weak-lensing analysis of the central 1 sqdeg field of the survey obtaining for the central cluster A3558 a mass of M_500=7.63E14 M_sun, in agreement with X-ray based estimates.Comment: 22 pages, 11 figures. Accepted for publication on MNRA

    The VOICE Survey : VST Optical Imaging of the CDFS and ES1 Fields

    Get PDF
    Indexación: Scopus.We present the VST Optical Imaging of the CDFS and ES1 Fields (VOICE) Survey, a VST INAF Guaranteed Time program designed to provide optical coverage of two 4 deg2 cosmic windows in the Southern hemisphere. VOICE provides the first, multi-band deep optical imaging of these sky regions, thus complementing and enhancing the rich legacy of longer-wavelength surveys with VISTA, Spitzer, Herschel and ATCA available in these areas and paving the way for upcoming observations with facilities such as the LSST, MeerKAT and the SKA. VOICE exploits VST's OmegaCAM optical imaging capabilities and completes the reduction of WFI data available within the ES1 fields as part of the ESO-Spitzer Imaging Extragalactic Survey (ESIS) program providing ugri and uBVR coverage of 4 and 4 deg2 areas within the CDFS and ES1 field respectively. We present the survey's science rationale and observing strategy, the data reduction and multi-wavelength data fusion pipeline. Survey data products and their future updates will be released at http://www.mattiavaccari.net/voice/ and on CDS/VizieR.https://pos.sissa.it/275/026/pd

    The Fornax Deep Survey with VST. I. The extended and diffuse stellar halo of NGC~1399 out to 192 kpc

    Get PDF
    [Abrigded] We have started a new deep, multi-imaging survey of the Fornax cluster, dubbed Fornax Deep Survey (FDS), at the VLT Survey Telescope. In this paper we present the deep photometry inside two square degrees around the bright galaxy NGC1399 in the core of the cluster. We found a very extended and diffuse envelope surrounding the luminous galaxy NGC1399: we map the surface brightness out to 33 arcmin (~ 192 kpc) from the galaxy center and down to about 31 mag/arcsec^2 in the g band. The deep photometry allows us to detect a faint stellar bridge in the intracluster region between NGC1399 and NGC1387. By analyzing the integrated colors of this feature, we argue that it could be due to the ongoing interaction between the two galaxies, where the outer envelope of NGC1387 on its east side is stripped away. By fitting the light profile, we found that it exists a physical break radius in the total light distribution at R=10 arcmin (~58 kpc) that sets the transition region between the bright central galaxy and the outer exponential stellar halo. We discuss the main implications of this work on the build-up of the stellar halo at the center of the Fornax cluster. By comparing with the numerical simulations of the stellar halo formation for the most massive BCGs, we find that the observed stellar halo mass fraction is consistent with a halo formed through the multiple accretion of progenitors with a stellar mass in the range 10^8 - 10^11 M_sun. This might suggest that the halo of NGC1399 has also gone through a major merging event. The absence of a significant number of luminous stellar streams and tidal tails out to 192 kpc suggests that the epoch of this strong interaction goes back to an early formation epoch. Therefore, differently from the Virgo cluster, the extended stellar halo around NGC1399 is characterised by a more diffuse and well-mixed component, including the ICL.Comment: Accepted for publication in ApJ; 25 pages and 14 figures. An higher resolution file is available at the following link https://www.dropbox.com/s/fvltppduysdn6pb/NGC1399_fin_2c.pdf?dl=
    corecore