1,508 research outputs found

    Electro-oxidation of ethanol on Pt/C, Rh/C, and Pt/Rh/C-based electrocatalysts investigated by on-line DEMS

    Get PDF
    AbstractThe ethanol electro-oxidation reaction was studied on carbon-supported Pt, Rh, and on Pt overlayers deposited on Rh nanoparticles. The synthesized electrocatalysts were characterized by TEM and XRD. The reaction products were monitored by on-line DEMS experiments. Potentiodynamic curves showed higher overall reaction rate for Pt/C when compared to that for Rh/C. However, on-line DEMS measurements revealed higher average current efficiencies for complete ethanol electro-oxidation to CO2 on Rh/C. The average current efficiencies for CO2 formation increased with temperature and with the decrease in the ethanol concentration. The total amount of CO2, on the other hand, was slightly affected by the temperature and ethanol concentration. Additionally, the CO2 signal was observed only in the positive-going scan, none being observed in the negative-going scan, evidencing that the C–C bond breaking occurs only at lower potentials. Thus, the formation of CO2 mainly resulted from oxidative removal of adsorbed CO and CHx,ad species generated at the lower potentials, instead of the electrochemical oxidation of bulk ethanol molecules. The acetaldehyde mass signal, however, was greatly favored after increasing the ethanol concentration from 0.01 to 0.1molL−1, on both electrocatalysts, indicating that it is the major reaction product. For the Pt/Rh/C-based electrocatalysts, the Faradaic current and the conversion efficiency for CO2 formation was increased by adjusting the amount of Pt on the surface of the Rh/C nanoparticles. The higher conversion efficiency for CO2 formation on the Pt1Rh/C material was ascribed to its faster and more extensive ethanol deprotonation on the Pt–Rh sites, producing adsorbed intermediates in which the C–C bond cleavage is facilitated

    Time limit at the minimum velocity of VO2max and intracyclic variation of the velocity of the centre of mass

    Get PDF
    The purpose of this study was to analyse the relationship between time limit at the minimum velocity that elicits maximal oxygen consumption (TLim-vVO2max) and intra-cyclic variations of the velocity of the centre of mass (dv) in the four competitive swimming techniques. Twelve elite male swimmers SWIMMING BIOENERGETICS Rev Port Cien Desp 190 6(Supl.2) 185–197 swam their own best technique until exhaustion at their previously determined v O2max to assess TLim-v O2max. The test was videotaped in the sagittal plan and the APAS software was used to evaluate the horizontal velocity of the centre of mass (Vcm) and its intra-cyclic variation (dv) per swimming technique. Results pointed out that the strokes that presented higher intra-cyclic variations also presented larger values of TLim. Intra-cyclic speed fluctuations (dv) decreased during the TLim test in the four strokes studied, probably due to fatigue. Key words: VO2, intra-cyclic velocity variations, time limit, centre of mass.Authors want to express their gratitude to the Portuguese National Team, and the Portuguese Swimming Federation, for their cooperation

    An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy

    Full text link
    X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Although only five years have elapsed since the technique was first introduced, it has made rapid progress in demonstrating high-resolution threedimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a lifescience sample by XDM with a given resolution. We conclude that the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered by reports in the literature. The tentative conclusion of this study is that XDM should be able to image frozen-hydrated protein samples at a resolution of about 10 nm with "Rose-criterion" image quality.Comment: 9 pages, 4 figure

    Satellite-Detected Fluorescence Reveals Global Physiology of Ocean Phytoplankton

    Get PDF
    Phytoplankton photosynthesis links global ocean biology and climate-driven fluctuations in the physical environment. These interactions are largely expressed through changes in phytoplankton physiology, but physiological status has proven extremely challenging to characterize globally. Phytoplankton fluorescence does provide a rich source of physiological information long exploited in laboratory and field studies, and is now observed from space. Here we evaluate the physiological underpinnings of global variations in satellite-based phytoplankton chlorophyll fluorescence. The three dominant factors influencing fluorescence distributions are chlorophyll concentration, pigment packaging effects on light absorption, and light-dependent energy-quenching processes. After accounting for these three factors, resultant global distributions of quenching-corrected fluorescence quantum yields reveal a striking consistency with anticipated patterns of iron availability. High fluorescence quantum yields are typically found in low iron waters, while low quantum yields dominate regions where other environmental factors are most limiting to phytoplankton growth. Specific properties of photosynthetic membranes are discussed that provide a mechanistic view linking iron stress to satellite-detected fluorescence. Our results present satellite-based fluorescence as a valuable tool for evaluating nutrient stress predictions in ocean ecosystem models and give the first synoptic observational evidence that iron plays an important role in seasonal phytoplankton dynamics of the Indian Ocean. Satellite fluorescence may also provide a path for monitoring climate-phytoplankton physiology interactions and improving descriptions of phytoplankton light use efficiencies in ocean productivity models

    Sex-specific associations in multiparametric 3 T MRI measurements in adult livers

    Get PDF
    BackgroundMRI relaxometry mapping and proton density fat fraction (PDFF) have been proposed for the evaluation of hepatic fibrosis. However, sex-specific relationships of age and body fat with these MRI parameters have not been studied in detail among adults without clinically manifest hepatic disease. We aimed to determine the sex-specific correlation of multiparametric MRI parameters with age and body fat and to evaluate their interplay associations.Methods147 study participants (84 women, mean age 48±14 years, range 19-85 years) were prospectively enrolled. 3 T MRI including T1, T2 and T1ρ mapping and PDFF and R2* map were acquired. Visceral and subcutaneous fat were measured on the fat images from Dixon water-fat separation sequence.ResultsAll MRI parameters demonstrated sex difference except for T1ρ. PDFF was more related to visceral than subcutaneous fat. Per 100 ml gain of visceral or subcutaneous fat is associated with 1 or 0.4% accretion of liver fat, respectively. PDFF and R2* were higher in men (both P = 0.01) while T1 and T2 were higher in women (both P P P P ConclusionVisceral fat plays an essential role in the elevated liver fat. When using MRI parametric measures for liver disease evaluation, the interplay between these parameters should be considered.Radiolog

    Self-consistent modelling of hot plasmas within non-extensive Tsallis' thermostatistics

    Full text link
    A study of the effects of non-extensivity on the modelling of atomic physics in hot dense plasmas is proposed within Tsallis' statistics. The electronic structure of the plasma is calculated through an average-atom model based on the minimization of the non-extensive free energy.Comment: submitted to "Eur. Phys. J. D
    corecore