31 research outputs found

    INTOXICAÇÃO POR PTERIDIUM ARACHNOIDEUM NO OESTE DE SANTA CATARINA - ESTUDO RETROSPECTIVO (2013-2017)

    Get PDF
    Samambaia (Pteridium arachnoideum) é uma das plantas tóxicas mais importantes na criação de bovinos de todo o Brasil. O objetivo desse trabalho foi descrever os diagnósticos de intoxicação por samambaia, em bovinos na região oeste de Santa Catarina, realizados pelo Laboratório de Patologia Veterinária (LPV) do IFC – Campus Concórdia, no período entre 2013 e 2017. No período, foram realizadas 641 necropsias de bovinos, sendo que 22 dessas tiveram o diagnóstico de intoxicação por samambaia, totalizando 3,4% da casuística total de necropsias em bovinos. Foram 13 casos de síndrome hemorrágica aguda, seis casos de carcinomas de células escamosas na base da língua, esôfago ou rúmen, e três casos de hematúria enzoótica bovina. Apesar dos inúmeros trabalhos científicos a respeito da toxicidade do P. arachnoideum, o número de diagnósticos dessa intoxicação é alto na região, e a planta ainda é facilmente encontrada. A melhor forma de diminuir as intoxicações é o adequado manejo das pastagens e a correta adubação do solo, evitando com que a planta esteja disponível ao consumo dos animais, porém essa informação precisa ser difundida aos produtores rurais.  Palavras-chave: diagnóstico, patologia, samambaia, hematúria, carcinoma.

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Toll-Like Receptor 2 Is Required for Inflammatory Process Development during Leishmania infantum Infection

    No full text
    Visceral leishmaniasis (VL) is a chronic and fatal disease caused by Leishmania infantum in Brazil. Leukocyte recruitment to infected tissue is a crucial event for the control of infections such as VL. Among inflammatory cells, neutrophils are recruited to the site of Leishmania infection, and these cells may control parasite replication through oxidative or non-oxidative mechanisms. The recruitment, activation and functions of the neutrophils are coordinated by pro-inflammatory cytokines and chemokines during recognition of the parasite by pattern recognition receptors (PRRs). Here, we demonstrated that the Toll-like receptor 2 (TLR2) signaling pathway contributes to the development of the innate immune response during L. infantum infection. The protective mechanism is related to the appropriate recruitment of neutrophils to the inflammatory site. Neutrophil migration is coordinated by DCs that produce CXCL1 and provide a prototypal Th1 and Th17 environment when activated via TLR2. Furthermore, infected TLR2(−/−) mice failed to induce nitric oxide synthase (iNOS) expression in neutrophils but not in macrophages. In vitro, infected TLR2(−/−) neutrophils presented deficient iNOS expression, nitric oxide (NO) and TNF-α production, decreased expression of CD11b and reduced L. infantum uptake capacity. The non-responsive state of neutrophils is associated with increased amounts of IL-10. Taken together, these data clarify new mechanisms by which TLR2 functions in promoting the development of the adaptive immune response and effector mechanisms of neutrophils during L. infantum infection

    Vitamins A and D and Zinc Affect the Leshmanicidal Activity of Canine Spleen Leukocytes

    No full text
    Canine leishmaniasis (CanL) is a chronic disease caused by Leishmania infantum, and the limitations of the current treatments have encouraged new alternatives, such as the use of immunomodulatory nutrients. The objective of this study was to determine the serum levels of vitamin A (retinol), vitamin D (25(OH)VD3), and zinc (Zn) in dogs with CanL and the effect of in vitro supplementation with the respective active forms ATRA, 1,25(OH)2VD3, and SZn on spleen leukocyte cultures. Serum retinol, 25(OH)VD3, and Zn were determined by HPLC, ELISA, and ICP-MS, respectively. Spleen leukocyte cultures were used for the detection of NO and ROS by flow cytometry; the IFN-γ, TNF-α, and IL-10 levels were determined by ELISA; and the parasite load was determined by microscopy. We detected low serum levels of retinol and Zn and high levels of 25(OH)VD3 in the CanL group. The in vitro supplementation of CanL spleen leukocytes with ATRA, 1,25(OH)2VD3, and SZn, in addition to a soluble leishmania antigen (SLA) treatment, increased the NO and ROS levels, while the treatments with only ATRA and SZn increased the TNF-a levels. Increased IL-10 and IFN-g levels were observed with the addition of SLA to the medium, although the addition of the three nutrients led to a reduction of the IL-10 levels, and the addition of 1,25(OH)2VD3 and SZn led to a reduction of IFN-g. A supplementation with 1,25(OH)2VD3 and SZn reduced the parasite load but only in the absence of SLA. We suggest that the nutrients we tested are involved in the leishmanicidal mechanism, showing a potential for investigation in future studies
    corecore