195 research outputs found

    CNO- formation through selective bond cleavage

    Get PDF
    H- and CNO- site and bond selectivity formation is shown in the context of atom-molecule collisions.publishersversionpublishe

    Electron transfer driven decomposition of adenine and selected analogs as probed by experimental and theoretical methods

    Get PDF
    We report on a combined experimental and theoretical study of electron transfer induced decomposition of adenine and a selection of analogue molecules in collisions with potassium atoms (K). Time-of-flight negative ion mass spectra have been obtained in a wide collision energy range (6–68 eV in the centre-of-mass frame), providing a comprehensive investigation of the fragmentation patterns of purine, adenine, 9-methyl adenine, 6-dimethyl adenine and 2-D adenine. Following our recent communication about selective hydrogen loss from the transient negative ions (TNI) produced in these collisions [T. Dunha et al. J. Chem. Phys. 148, 021101 (2018)], this work focuses on the production of smaller fragment anions. In the low-energy part of the present range, several dissociation channels that are accessible in free electron attachment experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. In this case, the excess energy can be redistributed through the available degrees of freedom inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a strong basis for the assignment the lowest unoccupied molecular orbitals accessed in the collision process

    Novel experimental setup for time-of-flight mass spectrometry ion detection in collisions of anionic species with neutral gas-phase molecular targets

    Get PDF
    8 págs.; 4 figs.; Open Access funded by Creative Commons Atribution Licence 4.0We report a novel experimental setup for studying collision induced products resulting from the interaction of anionic beams with a neutral gas-phase molecular target. The precursor projectile was admitted into vacuum through a commercial pulsed valve, with the anionic beam produced in a hollow cathode discharge-induced plasma, and guided to the interaction region by a set of deflecting plates where it was made to interact with the target beam. Depending on the collision energy regime, negative and positive species can be formed in the collision region and ions were time-of-flight (TOF) mass-analysed. Here, we present data on O2 precursor projectile, where we show clear evidence of O– and O2 – formation from the hollow cathode source as well as preliminary results on the interaction of these anions with nitromethane, CH3NO2. The negative ions formed in such collisions were analysed using time-of-flight mass spectrometry. The five most dominant product anions were assigned to H–, O–, NO–, CNO– and CH3NO2 –.PLV acknowledges the Portuguese Foundation for Science and Technology (FCT-MEC) through SFRH/BSAB/105792/ 2014 during his sabbatical stay at CSIC, Madrid and the research grants PTDC/FIS-ATO/1832/2012 and UID/FIS/00068/ 2013. FFS acknowledges FCT-MEC through researcher grant IF-FCT IF/00380/2014. We also acknowledge the Spanish Ministerio de Economía y Competitividad (Project No. FIS 2012-31230). Some of this work forms part of the EU/ESF COST Actions CM1401 and CM1301, Our Astro-Chemical History and Chemistry for Electron-Induced Nanofabrication, respectively. LE-G and GG acknowledge the FP7-PEOPLE-2013-ITN research grant “Advanced Radiotherapy, Generated by Exploiting Nanoprocesses and Technologies (ARGENT)”.Peer Reviewe

    Threshold behavior in metastable dissociation of multi-photon ionized thymine and uracil

    Get PDF
    Microsecond-timescale HNCO loss has been observed from single-color multi-photon ionized pyrimidine nucleobases in the gas phase. Photon energy thresholds for the metastable channels have been measured at 5.55 ± 0.02 eV for thymine and 5.57 ± 0.02 eV for uracil. We argue that these results can be attributed to accessing the molecules’ S1 states with additional vibrational energy matching the threshold energy for HNCO loss from the radical cation. Combined with previous photoionization energies, this enables the S1 adiabatic energies to be deduced: 3.67 ± 0.07 eV for thymine and 3.77 ± 0.07 eV for uracil. These values are consistent with recent calculations

    Multi-photon ionization and fragmentation of uracil: neutral excited-state ring opening and hydration effects

    Get PDF
    Multi-photon ionization (MPI) of the RNA base uracil has been studied in the wavelength range 220–270 nm, coinciding with excitation to the S2(ππ*) state. A fragment ion at m/z = 84 was produced by 2-photon absorption at wavelengths ≤232 nm and assigned to C3H4N2O+ following CO abstraction. This ion has not been observed in alternative dissociative ionization processes (notably electron impact) and its threshold is close to recent calculations of the minimum activation energy for a ring opening conical intersection to a σ(n-π)π* closed shell state. Moreover, the predicted ring opening transition leaves a CO group at one end of the isomer, apparently vulnerable to abstraction. An MPI mass spectrum of uracil-water clusters is presented for the first time and compared with an equivalent dry measurement. Hydration enhances certain fragment ion pathways (particularly C3H3NO+) but represses C3H4N2O+ production. This indicates that hydrogen bonding to water stabilizes uracil with respect to neutral excited-state ring opening

    Communication: Site-selective bond excision of adenine upon electron transfer

    Get PDF
    This work demonstrates that selective excision of hydrogen atoms at a particular site of the DNA base adenine can be achieved in collisions with electronegative atoms by controlling the impact energy. The result is based on analysing the time-of-flight mass spectra yields of potassium collisions with a series of labeled adenine derivatives. The production of dehydrogenated parent anions is consistent with neutral H loss either from selective breaking of C–H or N–H bonds. These unprecedented results open up a new methodology in charge transfer collisions that can initiate selective reactivity as a key process in chemical reactions that are dominant in different areas of science and technology

    The role of pyrimidine and water as underlying molecular constituents for describing radiation damage in living tissue: A comparative study

    Get PDF
    8 págs.; 7 figs.; 2 tabs.© 2015 AIP Publishing LLC. Water is often used as the medium for characterizing the effects of radiation on living tissue. However, in this study, charged-particle track simulations are employed to quantify the induced physicochemical and potential biological implications when a primary ionising particle with energy 10 keV strikes a medium made up entirely of water or pyrimidine. Note that pyrimidine was chosen as the DNA/RNA bases cytosine, thymine, and uracil can be considered pyrimidine derivatives. This study aims to assess the influence of the choice of medium on the charged-particle transport, and identify how appropriate it is to use water as the default medium to describe the effects of ionising radiation on living tissue. Based on the respective electron interaction cross sections, we provide a model, which allows the study of radiation effects not only in terms of energy deposition (absorbed dose and stopping power) but also in terms of the number of induced molecular processes. Results of these parameters for water and pyrimidine are presented and compared.This research was supported by the Australian Research Council (ARC) through its Centres of Excellence Program. D.B.J. thanks the ARC for provision of a Discovery Early Career Researcher Award. We also acknowledge the support of the Spanish Ministerio de Economia y Competitivad under Project No. FIS 2012-31230 and the European Union COST Actions (MP1002 and CM1301). P.L.V. acknowledges the Portuguese Foundation for Science and Technology (FCTMEC) through research grants PTDC/FIS-ATO/1832/2012, UID/FIS/00068/2013, and SFRH/BSAB/105792/2014. P.L.V. also acknowledges his Visiting Professor position at Flinders University, Adelaide, South Australia.Peer Reviewe

    Isobutyl acetate: electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy and ab initio calculations

    Get PDF
    The high-resolution vacuum ultraviolet photoabsorption spectrum of isobutyl acetate, C6H12O2, is presented here and was measured over the energy range 4.3–10.8 eV (290–115 nm). Valence and Rydberg transitions with their associated vibronic series have been observed in the photoabsorption spectrum and are assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. The measured photoabsorption cross sections have been used to calculate the photolysis lifetime of this ester in the Earth’s upper atmosphere (20–50 km). Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of isobutyl acetate and are compared with a photoelectron spectrum (from 9.5 to 16.7 eV), recorded for the first time. Vibrational structure is observed in the first photoelectron band of this molecule
    corecore