1,710 research outputs found

    Do insectivorous bird communities decline on land-bridge forest islands in Peninsular Malaysia?

    Get PDF
    To assess the impact of habitat fragmentation on tropical avian communities, we sampled lowland forest birds on six land-bridge islands and two mainland forest sites in Lake Kenyir, Peninsular Malaysia using timed point counts, hypothesizing that insectivorous birds are the worst affected guild. We used an information-theoretic approach to evaluate the effects of area, isolation, primary dietary guild (omnivore, frugivore and insectivore) and their interactions in predicting species richness, abundance and diversity. Our analysis showed that a model that considered the effects of area, dietary guild and their interaction best explained observed patterns of species richness. But a model considering both area and dietary guild best explained the variation in abundance. Notably, insectivorous birds were singled out as the dietary guild most sensitive to fragmentation, followed by frugivorous and omnivorous birds and hence provide support for our hypothesis. Assemblages of insectivorous birds were clearly depauperate on anthropogenic forest islands in Lake Kenyir and are consistent with forest fragmentation studies in the Neotropics. Given their specialized foraging ecology and diversity, conservation of intact communities of insectivorous bird guilds in Malaysia will be critical for maintaining predator-prey interactions in lowland tropical forest

    Synergistic drug combinations from electronic health records and gene expression.

    Get PDF
    ObjectiveUsing electronic health records (EHRs) and biomolecular data, we sought to discover drug pairs with synergistic repurposing potential. EHRs provide real-world treatment and outcome patterns, while complementary biomolecular data, including disease-specific gene expression and drug-protein interactions, provide mechanistic understanding.MethodWe applied Group Lasso INTERaction NETwork (glinternet), an overlap group lasso penalty on a logistic regression model, with pairwise interactions to identify variables and interacting drug pairs associated with reduced 5-year mortality using EHRs of 9945 breast cancer patients. We identified differentially expressed genes from 14 case-control human breast cancer gene expression datasets and integrated them with drug-protein networks. Drugs in the network were scored according to their association with breast cancer individually or in pairs. Lastly, we determined whether synergistic drug pairs found in the EHRs were enriched among synergistic drug pairs from gene-expression data using a method similar to gene set enrichment analysis.ResultsFrom EHRs, we discovered 3 drug-class pairs associated with lower mortality: anti-inflammatories and hormone antagonists, anti-inflammatories and lipid modifiers, and lipid modifiers and obstructive airway drugs. The first 2 pairs were also enriched among pairs discovered using gene expression data and are supported by molecular interactions in drug-protein networks and preclinical and epidemiologic evidence.ConclusionsThis is a proof-of-concept study demonstrating that a combination of complementary data sources, such as EHRs and gene expression, can corroborate discoveries and provide mechanistic insight into drug synergism for repurposing

    Progress in adolescent health and wellbeing: tracking 12 headline indicators for 195 countries and territories, 1990–2016

    Get PDF
    Background: Rapid demographic, epidemiological, and nutritional transitons have brought a pressing need to track progress in adolescent health. Here, we present country-level estimates of 12 headline indicators from the Lancet Commission on adolescent health and wellbeing, from 1990 to 2016. Methods: Indicators included those of health outcomes (disability-adjusted life-years [DALYs] due to communicable, maternal, and nutritional diseases; injuries; and non-communicable diseases); health risks (tobacco smoking, binge drinking, overweight, and anaemia); and social determinants of health (adolescent fertility; completion of secondary education; not in education, employment, or training [NEET]; child marriage; and demand for contraception satisfied with modern methods). We drew data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016, International Labour Organisation, household surveys, and the Barro-Lee education dataset. Findings: From 1990 to 2016, remarkable shifts in adolescent health occurred. A decrease in disease burden in many countries has been offset by population growth in countries with the poorest adolescent health profiles. Compared with 1990, an additional 250 million adolescents were living in multi-burden countries in 2016, where they face a heavy and complex burden of disease. The rapidity of nutritional transition is evident from the 324·1 million (18%) of 1·8 billion adolescents globally who were overweight or obese in 2016, an increase of 176·9 million compared with 1990, and the 430·7 million (24%) who had anaemia in 2016, an increase of 74·2 million compared with 1990. Child marriage remains common, with an estimated 66 million women aged 20–24 years married before age 18 years. Although gender-parity in secondary school completion exists globally, prevalence of NEET remains high for young women in multi-burden countries, suggesting few opportunities to enter the workforce in these settings. Interpretation: Although disease burden has fallen in many settings, demographic shifts have heightened global inequalities. Global disease burden has changed little since 1990 and the prevalence of many adolescent health risks have increased. Health, education, and legal systems have not kept pace with shifting adolescent needs and demographic changes. Gender inequity remains a powerful driver of poor adolescent health in many countries. Funding: Australian National Health and Medical Research Council, and the Bill & Melinda Gates Foundatio

    Inheritance of protection from osmotic stress

    Full text link
    Exposure of mother worms to mild osmotic stress induces gene expression changes in offspring that protect them from strong osmotic stress. Inheritance of protection is now shown to depend on altered insulin-like signalling in the maternal germline, which confers protection through increased expression of zygotic gpdh-2, a rate-limiting enzyme in glycerol biosynthesis

    Disruption of a GATA4/Ankrd1 Signaling Axis in Cardiomyocytes Leads to Sarcomere Disarray: Implications for Anthracycline Cardiomyopathy

    Get PDF
    Doxorubicin (Adriamycin) is an effective anti-cancer drug, but its clinical usage is limited by a dose-dependent cardiotoxicity characterized by widespread sarcomere disarray and loss of myofilaments. Cardiac ankyrin repeat protein (CARP, ANKRD1) is a transcriptional regulatory protein that is extremely susceptible to doxorubicin; however, the mechanism(s) of doxorubicin-induced CARP depletion and its specific role in cardiomyocytes have not been completely defined. We report that doxorubicin treatment in cardiomyocytes resulted in inhibition of CARP transcription, depletion of CARP protein levels, inhibition of myofilament gene transcription, and marked sarcomere disarray. Knockdown of CARP with small interfering RNA (siRNA) similarly inhibited myofilament gene transcription and disrupted cardiomyocyte sarcomere structure. Adenoviral overexpression of CARP, however, was unable to rescue the doxorubicin-induced sarcomere disarray phenotype. Doxorubicin also induced depletion of the cardiac transcription factor GATA4 in cardiomyocytes. CARP expression is regulated in part by GATA4, prompting us to examine the relationship between GATA4 and CARP in cardiomyocytes. We show in co-transfection experiments that GATA4 operates upstream of CARP by activating the proximal CARP promoter. GATA4-siRNA knockdown in cardiomyocytes inhibited CARP expression and myofilament gene transcription, and induced extensive sarcomere disarray. Adenoviral overexpression of GATA4 (AdV-GATA4) in cardiomyocytes prior to doxorubicin exposure maintained GATA4 levels, modestly restored CARP levels, and attenuated sarcomere disarray. Interestingly, siRNA-mediated depletion of CARP completely abolished the Adv-GATA4 rescue of the doxorubicin-induced sarcomere phenotype. These data demonstrate co-dependent roles for GATA4 and CARP in regulating sarcomere gene expression and maintaining sarcomeric organization in cardiomyocytes in culture. The data further suggests that concurrent depletion of GATA4 and CARP in cardiomyocytes by doxorubicin contributes in large part to myofibrillar disarray and the overall pathophysiology of anthracycline cardiomyopathy

    Development of a blood-based gene expression algorithm for assessment of obstructive coronary artery disease in non-diabetic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alterations in gene expression in peripheral blood cells have been shown to be sensitive to the presence and extent of coronary artery disease (CAD). A non-invasive blood test that could reliably assess obstructive CAD likelihood would have diagnostic utility.</p> <p>Results</p> <p>Microarray analysis of RNA samples from a 195 patient Duke CATHGEN registry case:control cohort yielded 2,438 genes with significant CAD association (p < 0.05), and identified the clinical/demographic factors with the largest effects on gene expression as age, sex, and diabetic status. RT-PCR analysis of 88 CAD classifier genes confirmed that diabetic status was the largest clinical factor affecting CAD associated gene expression changes. A second microarray cohort analysis limited to non-diabetics from the multi-center PREDICT study (198 patients; 99 case: control pairs matched for age and sex) evaluated gene expression, clinical, and cell population predictors of CAD and yielded 5,935 CAD genes (p < 0.05) with an intersection of 655 genes with the CATHGEN results. Biological pathway (gene ontology and literature) and statistical analyses (hierarchical clustering and logistic regression) were used in combination to select 113 genes for RT-PCR analysis including CAD classifiers, cell-type specific markers, and normalization genes.</p> <p>RT-PCR analysis of these 113 genes in a PREDICT cohort of 640 non-diabetic subject samples was used for algorithm development. Gene expression correlations identified clusters of CAD classifier genes which were reduced to meta-genes using LASSO. The final classifier for assessment of obstructive CAD was derived by Ridge Regression and contained sex-specific age functions and 6 meta-gene terms, comprising 23 genes. This algorithm showed a cross-validated estimated AUC = 0.77 (95% CI 0.73-0.81) in ROC analysis.</p> <p>Conclusions</p> <p>We have developed a whole blood classifier based on gene expression, age and sex for the assessment of obstructive CAD in non-diabetic patients from a combination of microarray and RT-PCR data derived from studies of patients clinically indicated for invasive angiography.</p> <p>Clinical trial registration information</p> <p>PREDICT, Personalized Risk Evaluation and Diagnosis in the Coronary Tree, <url>http://www.clinicaltrials.gov</url>, <a href="http://www.clinicaltrials.gov/ct2/show/NCT00500617">NCT00500617</a></p

    Communications Biophysics

    Get PDF
    Contains research objectives and summary of research on nine research projects split into four sections.National Institutes of Health (Grant 5 ROI NS11000-03)National Institutes of Health (Grant 1 P01 NS13126-01)National Institutes of Health (Grant 1 RO1 NS11153-01)National Institutes of Health (Grant 2 R01 NS10916-02)Harvard-M.I.T. Rehabilitation Engineering CenterU. S. Department of Health, Education, and Welfare (Grant 23-P-55854)National Institutes of Health (Grant 1 ROl NS11680-01)National Institutes of Health (Grant 5 ROI NS11080-03)M.I.T. Health Sciences Fund (Grant 76-07)National Institutes of Health (Grant 5 T32 GM07301-02)National Institutes of Health (Grant 5 TO1 GM01555-10

    Genetic Variation in OAS1 Is a Risk Factor for Initial Infection with West Nile Virus in Man

    Get PDF
    West Nile virus (WNV) is a re-emerging pathogen that can cause fatal encephalitis. In mice, susceptibility to WNV has been reported to result from a single point mutation in oas1b, which encodes 2′–5′ oligoadenylate synthetase 1b, a member of the type I interferon-regulated OAS gene family involved in viral RNA degradation. In man, the human ortholog of oas1b appears to be OAS1. The ‘A’ allele at SNP rs10774671 of OAS1 has previously been shown to alter splicing of OAS1 and to be associated with reduced OAS activity in PBMCs. Here we show that the frequency of this hypofunctional allele is increased in both symptomatic and asymptomatic WNV seroconverters (Caucasians from five US centers; total n = 501; OR = 1.6 [95% CI 1.2–2.0], P = 0.0002 in a recessive genetic model). We then directly tested the effect of this SNP on viral replication in a novel ex vivo model of WNV infection in primary human lymphoid tissue. Virus accumulation varied markedly among donors, and was highest for individuals homozygous for the ‘A’ allele (P<0.0001). Together, these data identify OAS1 SNP rs10774671 as a host genetic risk factor for initial infection with WNV in humans

    Communications Biophysics

    Get PDF
    Contains reports on four research projects.National Institutes of Health (Grant 5 P01 NS13126-02)National Institutes of Health (Grant 5 K04 NS00113-03)National Institutes of Health (Grant 2 ROI NS11153-02A1)National Science Foundation (Grant BNS77-16861)National Institutes of Health (Grant 5 RO1 NS10916-03)National Institutes of Health (Fellowship 1 F32 NS05327)National Institutes of Health (Grant 5 ROI NS12846-02)National Institutes of Health (Fellowship 1 F32 NS05266)Edith E. Sturgis FoundationNational Institutes of Health (Grant 1 R01 NS11680-01)National Institutes of Health (Grant 2 RO1 NS11080-04)National Institutes of Health (Grant 5 T32 GIM107301-03)National Institutes of Health (Grant 5 TOI GM01555-10
    corecore