1,303 research outputs found

    Disaster Resilience Education and Research Roadmap for Europe 2030 : ANDROID Report

    Get PDF
    A disaster resilience education and research roadmap for Europe 2030 has been launched. This roadmap represents an important output of the ANDROID disaster resilience network, bringing together existing literature in the field, as well as the results of various analysis and study projects undertaken by project partners.The roadmap sets out five key challenges and opportunities in moving from 2015 to 2030 and aimed at addressing the challenges of the recently announced Sendai Framework for Disaster Risk Reduction 2015-2030. This roadmap was developed as part of the ANDROID Disaster Resilience Network, led by Professor Richard Haigh of the Global Disaster Resilience Centre (www.hud.ac.uk/gdrc ) at the School of Art, Design and Architecture at the University of Huddersfield, UK. The ANDROID consortium of applied, human, social and natural scientists, supported by international organisations and a stakeholder board, worked together to map the field in disaster resilience education, pool their results and findings, develop interdisciplinary explanations, develop capacity, move forward innovative education agendas, discuss methods, and inform policy development. Further information on ANDROID Disaster Resilience network is available at: http://www.disaster-resilience.netAn ANDROID Disaster Resilience Network ReportANDROI

    Is there any advantage in placing an additional calcar screw in locked nailing of proximal humeral fractures?

    Get PDF
    AbstractBackgroundThe objective of this study was to evaluate the biomechanical effect of an additional unlocked calcar screw compared to a standard setting with three proximal humeral head screws alone for fixation of an unstable 2-part fracture of the surgical neck.HypothesisThe additional calcar screw improves stiffness and failure load.MethodsFourteen fresh frozen humeri were randomized into two equal sized groups. An unstable 2-part fracture of the surgical neck was simulated and all specimens were fixed with the MultiLoc®-nail. Group I represented a basic screw setup, with three locked head screws and two unlocked shaft screws. Group II was identical with a supplemental unlocked calcar screw (CS). Stiffness tests were performed in torsional loading, as well as in axial and in 20° abduction/20° adduction modes. Subsequently cyclic loading and load-to-failure tests were performed. Resulting stiffness, displacement under cyclic load and ultimate load were compared between groups using the t-test for independent variables (α=0.05).ResultsNo significant differences were observed between the groups in any of the biomechanical parameters. Backing out of the CS was observed in three cases.DiscussionThe use of an additional unlocked calcar screw does not provide mechanical benefit in locked nailing of an unstable 2-part fracture of the surgical neck.Level of evidenceLevel III. Experimental biomechanical study with human specimen

    Peripheral blood RNA gene expression profiling in patients with bacterial meningitis

    Get PDF
    Objectives: The aim of present study was to find genetic pathways activated during infection with bacterial meningitis (BM) and potentially influencing the course of the infection using genome-wide RNA expression profiling combined with pathway analysis and functional annotation of the differential transcription. Methods: We analyzed 21 patients with BM hospitalized in 2008. The control group consisted of 18 healthy subjects. The RNA was extracted from whole blood, globin mRNA was depleted and gene expression profiling was performed using GeneChip Human Gene 1.0 ST Arrays which can assess the transcription of 28,869 genes. Gene expression profile data were analyzed using Bioconductor packages and Bayesian modeling. Functional annotation of the enriched gene sets was used to define the altered genetic networks. We also analyzed whether gene expression profiles depend on the clinical course and outcome. In order to verify the microarray results, the expression levels of ten functionally relevant genes with high statistical significance (CD177, IL1R2, IL18R1, IL18RAP, OLFM4, TLR5, CPA3, FCER1A, IL5RA, and IL7R) were confirmed by quantitative real-time (qRT) PCR. Results: There were 8569 genes displaying differential expression at a significance level of p < 0.05. Following False Discovery Rate (FDR) correction, a total of 5500 genes remained significant at a p-value of < 0.01. Quantitative RT-PCR confirmed the differential expression in 10 selected genes. Functional annotation and network analysis indicated that most of the genes were related to activation of humoral and cellular immune responses (enrichment score 43). Those changes were found in both adults and in children with BM compared to the healthy controls. The gene expression profiles did not significantly depend on the clinical outcome, but there was a strong influence of the specific type of pathogen underlying BM. Conclusion: This study demonstrates that there is a very strong activation of immune response at the transcriptional level during BM and that the type of pathogen influences this transcriptional activation

    Genetic associations with learning over 100 days of practice

    Get PDF
    Cognitive performance is both heritable and sensitive to environmental inputs and sustained practice over time. However, it is currently unclear how genetic effects on cognitive performance change over the course of learning. We examine how polygenic scores (PGS) created from genome-wide association studies of educational attainment and cognitive performance are related to improvements in performance across nine cognitive tests (measuring perceptual speed, working memory, and episodic memory) administered to 131 adults (N = 51, ages = 20–31, and N = 80, ages = 65–80 years) repeatedly across 100 days. We observe that PGS associations with performance on a given task can change over the course of learning, with the specific pattern of change in associations differing across tasks. PGS correlations with pre-test to post-test scores may mask variability in how soon learning occurs over the course of practice. The associations between PGS and learning do not appear to simply reconstitute patterns of association between baseline performance and subsequent learning. Associations involving PGSs, however, were small with large confidence intervals. Intensive longitudinal research such as that described here may be of substantial value for clarifying the genetics of learning when implemented as far larger scale

    Metric tensor as the dynamical variable for variable cell-shape molecular dynamics

    Full text link
    We propose a new variable cell-shape molecular dynamics algorithm where the dynamical variables associated with the cell are the six independent dot products between the vectors defining the cell instead of the nine cartesian components of those vectors. Our choice of the metric tensor as the dynamical variable automatically eliminates the cell orientation from the dynamics. Furthermore, choosing for the cell kinetic energy a simple scalar that is quadratic in the time derivatives of the metric tensor, makes the dynamics invariant with respect to the choice of the simulation cell edges. Choosing the densitary character of that scalar allows us to have a dynamics that obeys the virial theorem. We derive the equations of motion for the two conditions of constant external pressure and constant thermodynamic tension. We also show that using the metric as variable is convenient for structural optimization under those two conditions. We use simulations for Ar with Lennard-Jones parameters and for Si with forces and stresses calculated from first-principles of density functional theory to illustrate the applications of the method.Comment: 10 pages + 6 figures, Latex, to be published in Physical Review

    Boundary Conditions on Internal Three-Body Wave Functions

    Get PDF
    For a three-body system, a quantum wave function Ψm\Psi^\ell_m with definite \ell and mm quantum numbers may be expressed in terms of an internal wave function χk\chi^\ell_k which is a function of three internal coordinates. This article provides necessary and sufficient constraints on χk\chi^\ell_k to ensure that the external wave function Ψm\Psi^\ell_m is analytic. These constraints effectively amount to boundary conditions on χk\chi^\ell_k and its derivatives at the boundary of the internal space. Such conditions find similarities in the (planar) two-body problem where the wave function (to lowest order) has the form rmr^{|m|} at the origin. We expect the boundary conditions to prove useful for constructing singularity free three-body basis sets for the case of nonvanishing angular momentum.Comment: 41 pages, submitted to Phys. Rev.

    Scarring Effects on Tunneling in Chaotic Double-Well Potentials

    Full text link
    The connection between scarring and tunneling in chaotic double-well potentials is studied in detail through the distribution of level splittings. The mean level splitting is found to have oscillations as a function of energy, as expected if scarring plays a role in determining the size of the splittings, and the spacing between peaks is observed to be periodic of period {2π2\pi\hbar} in action. Moreover, the size of the oscillations is directly correlated with the strength of scarring. These results are interpreted within the theoretical framework of Creagh and Whelan. The semiclassical limit and finite-{\hbar} effects are discussed, and connections are made with reaction rates and resonance widths in metastable wells.Comment: 22 pages, including 11 figure

    Initial Results of the S3-Humerus Plate

    Get PDF
    Fractures of the humeral head account for 5% of all fractures and incidence increases with age. Depending on fracture form and patients age a wide variety of therapeutical options exist. Stable fractures can be treated conservatively, while the majority of unstable and displaced fractures require surgical treatment. Many different surgical options are available; open reduction and internal fixation are widely preferred. The S3 Proximal Humerus Plate is a contoured plate to match the complex shape of the proximal humerus. It is designed to be positioned distal to the greater tuberosity preventing subacromial impingement
    corecore