9 research outputs found

    Data evaluation and numerical modeling of hydrological interactions between active layer, lake and talik in a permafrost catchment, Western Greenland

    Get PDF
    SummaryThis study investigates annual water balance conditions and their spatiotemporal variability under a wide variety of atmospheric driving conditions in the periglacial permafrost catchment of Two Boat Lake in Western Greenland. The study uses and combines a comprehensive hydrological multi-parameter dataset measured at the site with site conceptualization and numerical model development, application and testing. The model result reproduces measured lake and groundwater levels, as well as observations made by time-lapse cameras. The results highlights the importance of numerical modeling that takes into account and combines evapotranspiration with other surface and subsurface hydrological processes at various depths, in order to quantitatively understand and represent the dynamics and complexity of the interactions between meteorology, active layer hydrology, lakes, and unfrozen groundwater below permafrost in periglacial catchments. Regarding these interactions, the water flow between the studied lake and a through talik within and beneath it is found to be small compared to other water balance components. The modeling results show that recharge and discharge conditions in the talik can shift in time, while the lake and active layer conditions in the studied catchment are independent of catchment-external landscape features, such as the unfrozen groundwater system below the permafrost and the nearby continental-scale ice sheet

    Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release

    Get PDF
    Concurrent ice sheet surface runoff and proglacial discharge monitoring are essential for understanding Greenland ice sheet meltwater release. We use an updated, well-constrained river discharge time series from the Watson River in southwest Greenland, with an accurate, observation-based ice sheet surface mass balance model of the  ∼  12 000 km<sup>2</sup> ice sheet area feeding the river. For the 2006–2015 decade, we find a large range of a factor of 3 in interannual variability in discharge. The amount of discharge is amplified  ∼  56 % by the ice sheet's hypsometry, i.e., area increase with elevation. A good match between river discharge and ice sheet surface meltwater production is found after introducing elevation-dependent transit delays that moderate diurnal variability in meltwater release by a factor of 10–20. The routing lag time increases with ice sheet elevation and attains values in excess of 1 week for the upper reaches of the runoff area at  ∼  1800 m above sea level. These multi-day routing delays ensure that the highest proglacial discharge levels and thus overbank flooding events are more likely to occur after multi-day melt episodes. Finally, for the Watson River ice sheet catchment, we find no evidence of meltwater storage in or release from the en- and subglacial environments in quantities exceeding our methodological uncertainty, based on the good match between ice sheet runoff and proglacial discharge

    Greenland Geothermal Heat Flow Database and Map (Version 1)

    Get PDF
    We compile and analyze all available geothermal heat flow measurements collected in and around Greenland into a new database of 419 sites and generate an accompanying spatial map. This database includes 290 sites previously reported by the International Heat Flow Commission (IHFC), for which we now standardize measurement and metadata quality. This database also includes 129 new sites, which have not been previously reported by the IHFC. These new sites consist of 88 offshore measurements and 41 onshore measurements, of which 24 are subglacial. We employ machine learning to synthesize these in situ measurements into a gridded geothermal heat flow model that is consistent across both continental and marine areas in and around Greenland. This model has a native horizontal resolution of 55ĝ€¯km. In comparison to five existing Greenland geothermal heat flow models, our model has the lowest mean geothermal heat flow for Greenland onshore areas. Our modeled heat flow in central North Greenland is highly sensitive to whether the NGRIP (North GReenland Ice core Project) elevated heat flow anomaly is included in the training dataset. Our model's most distinctive spatial feature is pronounced low geothermal heat flow (<ĝ€¯40ĝ€¯mWĝ€¯m-2) across the North Atlantic Craton of southern Greenland. Crucially, our model does not show an area of elevated heat flow that might be interpreted as remnant from the Icelandic plume track. Finally, we discuss the substantial influence of paleoclimatic and other corrections on geothermal heat flow measurements in Greenland. The in situ measurement database and gridded heat flow model, as well as other supporting materials, are freely available from the GEUS Dataverse (10.22008/FK2/F9P03L; Colgan and Wansing, 2021).publishedVersionPeer reviewe

    Lineament mapping and geological history of the Kangerlussuaq region, southern West Greenland

    Get PDF
    How could future ice ages affect deep nuclear waste repositories in crystalline basement rocks? Deep repositories may be affected by a number of glacially induced processes including, but not limited to, (1) fault activation or re-activation and associated seismicity, (2) changing hydraulic and chemical groundwater dynamics and (3) enhanced erosion. Such processes are likely to affect not only man-made barriers in spent fuel repositories such as copper canisters and bentonite clay buffers, but also the rock masses that contain and isolate the repositories. In order to increase our understanding of this problem, an international study (the Greenland Analogue Project) was set up in 2008. The aim of the study was to use crystalline bedrock at the margin of the Inland Ice near Kangerlussuaq airport in West Greenland as an analogue for future nuclear fuel waste repositories affected by glaciation in Fennoscandia and Canada. Accordingly, a wide range of field surveys were conducted for the analogue project (Fig. 1). This paper describes a detailed structural investigation of lineament zones and the establishment of an event succession for fault and fracture zone evolution in central parts of the study area (Figs 1B, 2), as well as an interpretation of the distribution of fracture and fault zones with potentially increased permeability. Three deep holes were drilled in the study area, and instruments were installed in two of them for subsequent down-hole sampling and monitoring of groundwater to a depth of c. 600 m. The cores were used to compare the subsurface fracture patterns with those established on the basis of surface mapping

    DH-GAP04 borehole hydraulic head, 2011 to 2018, Greenland

    No full text
    The 650 m long proglacial bedrock borehole DH-GAP04 is angled under the Greenland Ice Sheet and is the only bedrock borehole in the Arctic providing deep groundwater information at an active ice sheet setting. DH-GAP04 is drilled at the Greenland ice sheet margin and the lower part of the borehole extends in under the ice sheet. Permafrost is observed in the upper ~400 m of the borehole. DH-GAP04 is outfitted with a downhole instrument cluster that includes two inflatable packers, which divides the borehole in three sections: Section Up (400-561 m), Section Mid (561-571 m) and Section Low ( 571-651 m). Absolute pressure is measured in each section at 1-4 hour intervals and converted to hydraulic head. This dataset presents the daily average hydraulic head record spanning July, 2011 to December, 2018. Details on how absolute pressure is converted to hydraulic head is found in the accompanying "READ ME" file
    corecore