158 research outputs found

    Interface induced high temperature superconductivity in single unit-cell FeSe films on SrTiO3

    Full text link
    Searching for superconducting materials with high transition temperature (TC) is one of the most exciting and challenging fields in physics and materials science. Although superconductivity has been discovered for more than 100 years, the copper oxides are so far the only materials with TC above 77 K, the liquid nitrogen boiling point. Here we report an interface engineering method for dramatically raising the TC of superconducting films. We find that one unit-cell (UC) thick films of FeSe grown on SrTiO3 (STO) substrates by molecular beam epitaxy (MBE) show signatures of superconducting transition above 50 K by transport measurement. A superconducting gap as large as 20 meV of the 1 UC films observed by scanning tunneling microcopy (STM) suggests that the superconductivity could occur above 77 K. The occurrence of superconductivity is further supported by the presence of superconducting vortices under magnetic field. Our work not only demonstrates a powerful way for finding new superconductors and for raising TC, but also provides a well-defined platform for systematic study of the mechanism of unconventional superconductivity by using different superconducting materials and substrates

    Present and future resilience research driven by science and technology

    Get PDF
    Community resilience against major disasters is a multidisciplinary research field that garners an ever-increasing interest worldwide. This paper provides summaries of the discussions held on the subject matter and the research outcomes presented during the Second Resilience Workshop in Nanjing and Shanghai. It, thus, offers a community view of present work and future research directions identified by the workshop participants who hail from Asia – including China, Japan and Korea; Europe and the Americas

    Serum Early Prostate Cancer Antigen (EPCA) Level and Its Association with Disease Progression in Prostate Cancer in a Chinese Population

    Get PDF
    BACKGROUND: Early prostate cancer antigen (EPCA) has been shown a prostate cancer (PCa)-associated nuclear matrix protein, however, its serum status and prognostic power in PCa are unknown. The goals of this study are to measure serum EPCA levels in a cohort of patients with PCa prior to the treatment, and to evaluate the clinical value of serum EPCA. METHODS: Pretreatment serum EPCA levels were determined with an ELISA in 77 patients with clinically localized PCa who underwent radical prostatectomy and 51 patients with locally advanced or metastatic disease who received primary androgen deprivation therapy, and were correlated with clinicopathological variables and disease progression. Serum EPCA levels were also examined in 40 healthy controls. RESULTS: Pretreatment mean serum EPCA levels were significantly higher in PCa patients than in controls (16.84 ± 7.60 ng/ml vs. 4.12 ± 2.05 ng/ml, P<0.001). Patients with locally advanced and metastatic PCa had significantly higher serum EPCA level than those with clinically localized PCa (22.93 ± 5.28 ng/ml and 29.41 ± 8.47 ng/ml vs. 15.17 ± 6.03 ng/ml, P = 0.014 and P<0.001, respectively). Significantly elevated EPCA level was also found in metastatic PCa compared with locally advanced disease (P < 0.001). Increased serum EPCA levels were significantly and positively correlated with Gleason score and clinical stage, but not with PSA levels and age. On multivariate analysis, pretreatment serum EPCA level held the most significantly predictive value for the biochemical recurrence and androgen-independent progression among pretreatment variables (HR = 4.860, P<0.001 and HR = 5.418, P<0.001, respectively). CONCLUSIONS: Serum EPCA level is markedly elevated in PCa. Pretreatment serum EPCA level correlates significantly with the poor prognosis, showing prediction potential for PCa progression

    Phase Diagram and High Temperature Superconductivity at 65 K in Tuning Carrier Concentration of Single-Layer FeSe Films

    Full text link
    Superconductivity in the cuprate superconductors and the Fe-based superconductors is realized by doping the parent compound with charge carriers, or by application of high pressure, to suppress the antiferromagnetic state. Such a rich phase diagram is important in understanding superconductivity mechanism and other physics in the Cu- and Fe-based high temperature superconductors. In this paper, we report a phase diagram in the single-layer FeSe films grown on SrTiO3 substrate by an annealing procedure to tune the charge carrier concentration over a wide range. A dramatic change of the band structure and Fermi surface is observed, with two distinct phases identified that are competing during the annealing process. Superconductivity with a record high transition temperature (Tc) at ~65 K is realized by optimizing the annealing process. The wide tunability of the system across different phases, and its high-Tc, make the single-layer FeSe film ideal not only to investigate the superconductivity physics and mechanism, but also to study novel quantum phenomena and for potential applications.Comment: 15 pages, 4 figure

    Excessive activation of the TLR9/TGF-β1/PDGF-B pathway in the peripheral blood of patients with systemic lupus erythematosus

    Full text link
    Abstract Background Our aim is to study the existence of the TLR9/TGF-β1/PDGF-B pathway in healthy humans and patients with systemic lupus erythematosus (SLE), and to explore its possible involvement in the pathogenesis of lupus nephritis (LN). Methods Protein levels of the cytokines were detected by ELISA. mRNA levels of the cytokines were analyzed by real-time PCR. MTT assay was used to test the proliferation of mesangial cells under different treatments. Results Compared to healthy controls (N Control = 56), levels of Toll-like receptor (TLR)9, transforming growth factor (TGF)-β1, and platelet-derived growth factor B (PDGF-B) were increased significantly in the peripheral blood of SLE patients (N SLE = 112). Significant correlations between the levels of TLR9, TGF-β1, and PDGF-B were observed in both healthy controls and SLE patients. The levels of TGF-β1 and PDGF-B were greatly enhanced by TLR9 activation in primary cell cultures. The proliferation of mesangial cells induced by the plasma of SLE patients was significantly higher than that induced by healthy controls; PDGF-B was involved in this process. The protein levels of PDGF-B homodimer correlated with the levels of urine protein in SLE patients with LN (N LN =38). Conclusions The TLR9/TGF-β1/PDGF-B pathway exists in humans and can be excessively activated in SLE patients. High levels of PDGF-B may result in overproliferation of mesangial cells in the kidney that are involved in the development of glomerulonephritis and LN. Further studies are necessary to identify TLR9, TGF-β1, and PDGF-B as new therapeutic targets to prevent the development of glomerulonephritis and LN

    Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions

    Get PDF
    A person's lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multiancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in stage 1 (genome-wide discovery) and 66 studies in stage 2 (focused follow-up), for a total of 394,584 individuals from 5 ancestry groups. Analyses covered the period July 2014-November 2017. Genetic main effects and interaction effects were jointly assessed by means of a 2-degrees-of-freedom (df) test, and a 1-df test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P <1 x 10(-6)) with lipid levels in stage 1 and were evaluated in stage 2, followed by combined analyses of stage 1 and stage 2. In the combined analysis of stages 1 and 2, a total of 147 independent loci were associated with lipid levels at P <5 x 10(-8) using 2-df tests, of which 18 were novel. No genome-wide-significant associations were found testing the interaction effect alone. The novel loci included several genes (proprotein convertase subtilisin/kexin type 5 (PCSK5), vascular endothelial growth factor B (VEGFB), and apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1) complementation factor (A1CF)) that have a putative role in lipid metabolism on the basis of existing evidence from cellular and experimental models.Peer reviewe

    A multi-ancestry genome-wide study incorporating gene-smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure

    Get PDF
    Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P <5 x 10(-8), false discovery rate <0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.Peer reviewe

    Research Progress of Elastomer Materials and Application of Elastomers in Drilling Fluid

    No full text
    An elastomer is a material that undergoes large deformation under force and quickly recovers its approximate initial shape and size after withdrawing the external force. Furthermore, an elastomer can heal itself and increase volume when in contact with certain liquids. They have been widely used as sealing elements and packers in different oil drilling and development operations. With the development of drilling fluids, elastomer materials have also been gradually used as drilling fluid additives in drilling engineering practices. According to the material type classification, elastomer materials can be divided into polyurethane elastomer, epoxy elastomer, nanocomposite elastomer, rubber elastomer, etc. According to the function classification, elastomers can be divided into self-healing elastomers, expansion elastomers, etc. This paper systematically introduces the research progress of elastomer materials based on material type classification and functional classification. Combined with the requirements for drilling fluid additives in drilling fluid application practice, the application prospects of elastomer materials in drilling fluid plugging, fluid loss reduction, and lubrication are discussed. Oil-absorbing expansion and water-absorbing expansion elastomer materials, such as polyurethane, can be used as lost circulation materials, and enter the downhole to absorb water or absorb oil to expand, forming an overall high-strength elastomer to plug the leakage channel. When graphene/nano-composite material is used as a fluid loss additive, flexibility and elasticity facilitate the elastomer particles to enter the pores of the filter cake under the action of differential pressure, block a part of the larger pores, and thus, reduce the water loss, while it would not greatly change the rheology of drilling fluid. As a lubricating material, elastic graphite can form a protective film on the borehole wall, smooth the borehole wall, behaving like a scaly film, so that the sliding friction between the metal surface of the drill pipe and the casing becomes the sliding friction between the graphite flakes, thereby reducing the friction of the drilling fluid. Self-healing elastomers can be healed after being damaged by external forces, making drilling fluid technology more intelligent. The research and application of elastomer materials in the field of drilling fluid will promote the ability of drilling fluid to cope with complex formation changes, which is of great significance in the engineering development of oil and gas wells
    corecore