592 research outputs found

    Biochemical changes in low-salt fermentation of solidstate soy sauce

    Get PDF
    Low-salt solid-state fermentation soy sauce was prepared with defatted soy bean and wheat bran. Biochemical changes during the aging of the soy sauce mash were investigated. Results show that after a 15-day aging period, the contents of total nitrogen, formol titration nitrogen, free amino acids, reducing sugar, total sugar and the brown color were increased. However pH was decreased during the fermentation period. Furthermore contents of free amino acids in low-salt solid-state fermentation soy sauce fluctuated during the fermentation period with most of the free amino acids increased. The analysis of free amino acid composition shows that the contents of glutamic acid, aspartic acid, alanine and leucine were higher than other amino acids. Therefore it means that these amino acids may contribute to the taste and flavor of low-salt solid-state fermentation soy sauce. Analyzing the biochemical change in the fermented process of soy sauce is helpful to find out the shortcoming of lowsalt solid-state fermented soy sauce. It is of benefit in improving the quality of low-salt solid-state fermented soy sauce

    Diseases of Soybean: Sudden Death Syndrome

    Get PDF

    The NOAO Data Lab virtual storage system

    Get PDF
    Collaborative research/computing environments are essential for working with the next generations of large astronomical data sets. A key component of them is a distributed storage system to enable data hosting, sharing, and publication. VOSpace is a lightweight interface providing network access to arbitrary backend storage solutions and endorsed by the International Virtual Observatory Alliance (IVOA). Although similar APIs exist, such as Amazon S3, WebDav, and Dropbox, VOSpace is designed to be protocol agnostic, focusing on data control operations, and supports asynchronous and third-party data transfers, thereby minimizing unnecessary data transfers. It also allows arbitrary computations to be triggered as a result of a transfer operation: for example, a file can be automatically ingested into a database when put into an active directory or a data reduction task, such as Sextractor, can be run on it. In this paper, we shall describe the VOSpace implementations that we have developed for the NOAO Data Lab. These offer both dedicated remote storage, accessible as a local file system via FUSE, and a local VOSpace service to easily enable data synchronization

    The NOAO Data Lab: Science-Driven Development

    Get PDF
    The NOAO Data Lab aims to provide infrastructure to maximize community use of the high-value survey datasets now being collected with NOAO telescopes and instruments. As a science exploration framework, the Data Lab allow users to access and search databases containing large (i.e. terabyte-scale) catalogs, visualize, analyze, and store the results of these searches, combine search results with data from other archives or facilities, and share these results with collaborators using a shared workspace and/or data publication service. In the process of implementing the needed tools and services, specific science cases are used to guide development of the system framework and tools. The result is a Year-1 capability demonstration that (fully or partially) implements each of the major architecture components in the context of a real-world science use-case. In this paper, we discuss how this model of science-driven development helped us to build a fully functional system capable of executing the chosen science case, and how we plan to scale this system to support general use in the next phase of the project

    Binocular Encoding in the Damselfly Pre-motor Target Tracking System.

    Get PDF
    Akin to all damselflies, Calopteryx (family Calopterygidae), commonly known as jewel wings or demoiselles, possess dichoptic (separated) eyes with overlapping visual fields of view. In contrast, many dragonfly species possess holoptic (dorsally fused) eyes with limited binocular overlap. We have here compared the neuronal correlates of target tracking between damselfly and dragonfly sister lineages and linked these changes in visual overlap to pre-motor neural adaptations. Although dragonflies attack prey dorsally, we show that demoiselles attack prey frontally. We identify demoiselle target-selective descending neurons (TSDNs) with matching frontal visual receptive fields, anatomically and functionally homologous to the dorsally positioned dragonfly TSDNs. By manipulating visual input using eyepatches and prisms, we show that moving target information at the pre-motor level depends on binocular summation in demoiselles. Consequently, demoiselles encode directional information in a binocularly fused frame of reference such that information of a target moving toward the midline in the left eye is fused with information of the target moving away from the midline in the right eye. This contrasts with dragonfly TSDNs, where receptive fields possess a sharp midline boundary, confining responses to a single visual hemifield in a sagittal frame of reference (i.e., relative to the midline). Our results indicate that, although TSDNs are conserved across Odonata, their neural inputs, and thus the upstream organization of the target tracking system, differ significantly and match divergence in eye design and predatory strategies. VIDEO ABSTRACT

    Human rotavirus replicates in salivary glands and primes immune responses in facial and intestinal lymphoid tissues of gnotobiotic pigs

    Get PDF
    Human rotavirus (HRV) is a leading cause of viral gastroenteritis in children across the globe. The virus has long been established as a pathogen of the gastrointestinal tract, targeting small intestine epithelial cells and leading to diarrhea, nausea, and vomiting. Recently, this classical infection pathway was challenged by the findings that murine strains of rotavirus can infect the salivary glands of pups and dams and transmit via saliva from pups to dams during suckling. Here, we aimed to determine if HRV was also capable of infecting salivary glands and spreading in saliva using a gnotobiotic (Gn) pig model of HRV infection and disease. Gn pigs were orally inoculated with various strains of HRV, and virus shedding was monitored for several days post-inoculation. HRV was shed nasally and in feces in all inoculated pigs. Infectious HRV was detected in the saliva of four piglets. Structural and non-structural HRV proteins, as well as the HRV genome, were detected in the intestinal and facial tissues of inoculated pigs. The pigs developed high IgM antibody responses in serum and small intestinal contents at 10 days post-inoculation. Additionally, inoculated pigs had HRV-specific IgM antibody-secreting cells present in the ileum, tonsils, and facial lymphoid tissues. Taken together, these findings indicate that HRV can replicate in salivary tissues and prime immune responses in both intestinal and facial lymphoid tissues of Gn pigs.Instituto de VirologΓ­aFil: Nyblade, Charlotte. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Zhou, Peng. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Frazier, Maggie. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Frazier, Annie. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Hensley, Casey. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Fantasia-Davis, Ariana. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Shahrudin, Shabihah. Indiana University. Department of Biology; Estados UnidosFil: Hoffer, Miranda. Indiana University. Department of Biology; Estados UnidosFil: Agbemabiese, Chantal Ama. Indiana University. Department of Biology; Estados UnidosFil: LaRue, Lauren. GIVAX Inc.; Estados UnidosFil: Barro, Mario. GIVAX Inc.; Estados UnidosFil: Patton, John T. Indiana University. Department of Biology; Estados UnidosFil: ParreΓ±o, Gladys Viviana. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: ParreΓ±o, Gladys Viviana. Instituto Nacional de TecnologΓ­a Agropecuaria (INTA). INCUINTA. Instituto de Virologia e Innovaciones Tecnologicas (IVIT); ArgentinaFil: ParreΓ±o, Gladys Viviana. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas; ArgentinaFil: Yuan, Lijuan. Virginia Polytechnic Institute and State University. Center for Emerging, Zoonotic, and Arthropod‑Borne Pathogens; Estados Unido

    Climatic warming in China during 1901-2015 based on an extended dataset of instrumental temperature records

    Get PDF
    Monthly mean instrumental surface air temperature (SAT) observations back to the nineteenth century in China are synthesized from different sources via specific quality-control, interpolation, and homogenization. Compared with the first homogenized long-term SAT dataset for China by Cao et al. (2013), which contained 18 stations mainly located in the middle and eastern part of China, the present dataset includes homogenized monthly SAT series at 32 stations, with an extended coverage especially towards western China. Missing values are interpolated by using observations at nearby stations including those from neighboring countries. Cross validation shows that the mean bias error (MBE) is generally small and falls between 0.45Β°C and -0.35Β°C. Multiple homogenization methods and available metadata are applied to assess the consistency of the time series and to adjust inhomogeneity biases. The homogenized annual mean SAT series show a range of trends between 1.1 and 4.0Β°C/century in northeastern China, between 0.4 and 1.9Β°C/century in southeastern China, and between 1.4 and 3.7Β°C/century in western China to the west of 105E (from the beginning years of the stations to 2015). The unadjusted data include unusually warm records during the 1940s and hence tend to underestimate the warming trends at a number of stations. The mean SAT series for China based on the Climate Anomaly Method shows a warming trend of 1.56Β°C/century during 1901-2015, larger than those based on other currently available datasets

    The CLIVAR C20C Project: Which components of the Asian-Australian monsoon circulation variations are forced and reproducible?

    Get PDF
    A multi-model set of atmospheric simulations forced by historical sea surface temperature (SST) or SSTs plus Greenhouse gases and aerosol forcing agents for the period of 1950-1999 is studied to identify and understand which components of the Asian-Australian monsoon (A-AM) variability are forced and reproducible. The analysis focuses on the summertime monsoon circulations, comparing model results against the observations. The priority of different components of the A-AM circulations in terms of reproducibility is evaluated. Among the subsystems of the wide A-AM, the South Asian monsoon and the Australian monsoon circulations are better reproduced than the others, indicating they are forced and well modeled. The primary driving mechanism comes from the tropical Pacific. The western North Pacific monsoon circulation is also forced and well modeled except with a slightly lower reproducibility due to its delayed response to the eastern tropical Pacific forcing. The simultaneous driving comes from the western Pacific surrounding the maritime continent region. The Indian monsoon circulation has a moderate reproducibility, partly due to its weakened connection to June-July-August SSTs in the equatorial eastern Pacific in recent decades. Among the A-AM subsystems, the East Asian summer monsoon has the lowest reproducibility and is poorly modeled. This is mainly due to the failure of specifying historical SST in capturing the zonal land-sea thermal contrast change across the East Asia. The prescribed tropical Indian Ocean SST changes partly reproduce the meridional wind change over East Asia in several models. For all the A-AM subsystem circulation indices, generally the MME is always the best except for the Indian monsoon and East Asian monsoon circulation indices

    Having a lot of a good thing: multiple important group memberships as a source of self-esteem.

    Get PDF
    Copyright: Β© 2015 Jetten et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedMembership in important social groups can promote a positive identity. We propose and test an identity resource model in which personal self-esteem is boosted by membership in additional important social groups. Belonging to multiple important group memberships predicts personal self-esteem in children (Study 1a), older adults (Study 1b), and former residents of a homeless shelter (Study 1c). Study 2 shows that the effects of multiple important group memberships on personal self-esteem are not reducible to number of interpersonal ties. Studies 3a and 3b provide longitudinal evidence that multiple important group memberships predict personal self-esteem over time. Studies 4 and 5 show that collective self-esteem mediates this effect, suggesting that membership in multiple important groups boosts personal self-esteem because people take pride in, and derive meaning from, important group memberships. Discussion focuses on when and why important group memberships act as a social resource that fuels personal self-esteem.This study was supported by 1. Australian Research Council Future Fellowship (FT110100238) awarded to Jolanda Jetten (see http://www.arc.gov.au) 2. Australian Research Council Linkage Grant (LP110200437) to Jolanda Jetten and Genevieve Dingle (see http://www.arc.gov.au) 3. support from the Canadian Institute for Advanced Research Social Interactions, Identity and Well-Being Program to Nyla Branscombe, S. Alexander Haslam, and Catherine Haslam (see http://www.cifar.ca)

    The CLIVAR C20C Project: Which components of the Asian-Australian monsoon circulation variations are forced and reproducible?

    Get PDF
    A multi-model set of atmospheric simulations forced by historical sea surface temperature (SST) or SSTs plus Greenhouse gases and aerosol forcing agents for the period of 1950-1999 is studied to identify and understand which components of the Asian-Australian monsoon (A-AM) variability are forced and reproducible. The analysis focuses on the summertime monsoon circulations, comparing model results against the observations. The priority of different components of the A-AM circulations in terms of reproducibility is evaluated. Among the subsystems of the wide A-AM, the South Asian monsoon and the Australian monsoon circulations are better reproduced than the others, indicating they are forced and well modeled. The primary driving mechanism comes from the tropical Pacific. The western North Pacific monsoon circulation is also forced and well modeled except with a slightly lower reproducibility due to its delayed response to the eastern tropical Pacific forcing. The simultaneous driving comes from the western Pacific surrounding the maritime continent region. The Indian monsoon circulation has a moderate reproducibility, partly due to its weakened connection to June-July-August SSTs in the equatorial eastern Pacific in recent decades. Among the A-AM subsystems, the East Asian summer monsoon has the lowest reproducibility and is poorly modeled. This is mainly due to the failure of specifying historical SST in capturing the zonal land-sea thermal contrast change across the East Asia. The prescribed tropical Indian Ocean SST changes partly reproduce the meridional wind change over East Asia in several models. For all the A-AM subsystem circulation indices, generally the MME is always the best except for the Indian monsoon and East Asian monsoon circulation indices.Submitted3.7. Dinamica del clima e dell'oceanoJCR Journalope
    • …
    corecore